×

The collapse of the wave function in the joint metric-matter quantization for inflation. (English) Zbl 1254.83052

Summary: It has been argued that the standard inflationary scenario suffers from a serious deficiency as a model for the origin of the seeds of cosmic structure: it can not truly account for the transition from an early homogeneous and isotropic stage to another one lacking such symmetries. The issue has often been thought as a standard instance of the “quantum measurement problem”, but as has been recently argued by some of us, that quagmire reaches a critical level in the cosmological context of interest here. This has lead to a proposal in which the standard paradigm is supplemented by a hypothesis concerning the self-induced dynamical collapse of the wave function, as representing the physical mechanism through which such change of symmetry is brought forth. This proposal was originally formulated within the context of semiclassical gravity. Here we investigate an alternative realization of such idea implemented directly within the standard analysis in terms of a quantum field jointly describing the inflaton and metric perturbations, the so called Mukhanov-Sasaki variable. We show that even though the prescription is quite different, the theoretical predictions include some deviations from the standard ones, which are indeed very similar to those found in the early studies. We briefly discuss the differences between the two prescriptions, at both, the conceptual and practical levels.

MSC:

83F05 Relativistic cosmology
83C45 Quantization of the gravitational field
83C75 Space-time singularities, cosmic censorship, etc.
81T20 Quantum field theory on curved space or space-time backgrounds
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Perez, A., Sahlmann, H., Sudarsky, D.: On the quantum origin of the seeds of cosmic structure. Cl. Quantum Gravit. 23, 2317–2354 (2006) · Zbl 1102.83023 · doi:10.1088/0264-9381/23/7/008
[2] Sudarsky, D.: Shortcomings in the understanding of why cosmological perturbations look classical. Int. J. Mod. Phys. D 20, 509–552 (2011) · Zbl 1219.83141 · doi:10.1142/S0218271811018937
[3] Halliwell, J.J.: Decoherence in quantum cosmology. Phys. Rev. D 39, 2912 (1989) · doi:10.1103/PhysRevD.39.2912
[4] Zurek, W.H.: Environment induced superselection in cosmology. In: Presented at the quantum gravity symposium, pp. 456–472. Moscow, USSR, May 1990, Proceedings, (QC178:S4:1990)
[5] Laflamme, R., Matacz, A.: Decoherence funtional and inhomogeneities in the early universe. Int. J. Mod. Phys. D 2, 171 (1993) · Zbl 0942.83522 · doi:10.1142/S0218271893000155
[6] Polarski, D., Starobinsky, A.A.: Semiclassicality and decoherence of cosmological perturbations. Cl. Quantum Gravit. 13, 377 (1996) · Zbl 0849.53077 · doi:10.1088/0264-9381/13/3/006
[7] Hartle, J.B.: Quantum Cosmology Problems for the 21st century. ArXiv gr-qc/9701022 (1997)
[8] Grishchuk, L.P., Martin, J.: Best unbiased estimates for microwave background anisotropies. Phys. Rev. D 56, 1924 (1997) · doi:10.1103/PhysRevD.56.1924
[9] Lesggourges, J., Polarski, D., Starobinsky, A.A.: Quantum to classical transition of cosmological perturbations for non vacuum initial states. Nucl. Phys. B 497, 479–510 (1997) · Zbl 0935.83011 · doi:10.1016/S0550-3213(97)00224-1
[10] Barvinsky, A.O., Kamenshchik, A.Y., Kiefer, C., Mishakov, I.V.: Decoherence in quantum cosmology at the onset of inflation. Nucl. Phys. B 551, 374 (1999) · doi:10.1016/S0550-3213(99)00208-4
[11] Kiefer, C.: Origin of classical structure from inflation. Nucl. Phys. Proc. Suppl. 88, 255 (2000) · doi:10.1016/S0920-5632(00)00779-9
[12] Castagnino, M., Lombardi, O.: The self-induced approach to decoherence in cosmology. Int. J. Theor. Phys. 42, 1281 (2003) · Zbl 1029.83041 · doi:10.1023/A:1025710700176
[13] Lombardo, F.C., Lopez Nacir, D.: Decoherence during inflation: the generation of classical inhomogeneities. Phys. Rev. D 72, 063506 (2004)
[14] Martin, J.: Inflationary cosmological perturbations of quantum mechanical origin. Lect. Notes Phys. 669, 199 (2005) · doi:10.1007/11377306_7
[15] Hartle, J.B.: Generalized Quantum Mechanics for Quantum Gravity. ArXiv gr-qc/0510126 (2005).
[16] Martin, J.: Inflationary perturbations: the cosmological schwinger effect. Lect. Notes Phys. 738, 193–241 (2008) · Zbl 1169.83002 · doi:10.1007/978-3-540-74353-8_6
[17] Burgess, C.P., Holman, R., Hoover, D.: Decoherence of inflationary primordial fluctuations. Phys. Rev. D 77, 063534 (2008) · doi:10.1103/PhysRevD.77.063534
[18] Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Theory of cosmological perturbations. Phys. Rept. 215, 203–333 (1992) · doi:10.1016/0370-1573(92)90044-Z
[19] Kiefer, C., Polarski, D.: Why do cosmological perturbations look classical to us? Adv. Sci. Lett. 2, 164 (2009) · doi:10.1166/asl.2009.1023
[20] Padmanabhan, T.: Structure Formation in the Universe. Section 10.4, pp. 364–373. Cambridge University Press, UK (1993)
[21] Weinberg, S.: Cosmology. Section 10.1, pp. 470–485. Oxford University Press, USA (2008)
[22] Mukhanov, V.F.: Physical Foundations of Cosmology. Section 8.3.3, pp. 340–348. Cambridge University Press, UK (2008)
[23] Lyth, D.H., Liddle, A.R.: The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure. Section 24.2, pp. 386–367. Cambridge University Press, UK (2009) · Zbl 1167.83303
[24] Penrose, R.: The Road to Reality : A Complete Guide to the Laws of the Universe. Section 30.14, pp. 861–865. Vintage books, US (2004)
[25] De Unanue, A., Sudarsky, D.: Phenomenological analysis of quantum collapse as source of the seeds of cosmic structure. Phys. Rev. D 78, 043510 (2008) · doi:10.1103/PhysRevD.78.043510
[26] León, G., Sudarsky, D.: The slow roll condition and the amplitude of the primordial spectrum of cosmic fluctuations: contrasts and similarities of standard account and the ’collapse scheme’. Cl. Quantum Gravit. 27, 225017 (2010) · Zbl 1204.83104 · doi:10.1088/0264-9381/27/22/225017
[27] León, G., De Unánue, A., Sudarsky, D.: Multiple quantum collapse of the inflaton field and its implications on the birth of cosmic structure. Cl. Quantum Gravit. 28, 155010 (2011) · Zbl 1225.83100 · doi:10.1088/0264-9381/28/15/155010
[28] León, G., Landau, S., Sudarsky, D.: Quantum Origin of the Primordial Fluctuation Spectrum and its Statistics. ArXiv 1107.3054 [astro-ph.CO] (2011).
[29] Diez-Tejedor, A., Sudarsky, D.: Towards a Formal Description of the Collapse Approach to the Inflationary Origin of the Seeds of Cosmic Structure. J. Cosmol. Astropart. Phys. 1207, 045 (2012)
[30] León, G., Sudarsky, D.: Novel possibility of nonstandard statistics in the inflationary spectrum of primordial inhomogeneities. SIGMA 8, 024 (2012) · Zbl 1242.83129
[31] Landau, S., Scoccola, C.G., Sudarsky, D.: Cosmological constraints on non-standard inflationary quantum collapse models. Phys. Rev. D 85, 123001 (2012) · doi:10.1103/PhysRevD.85.123001
[32] Sudarsky, D.: A signature of quantum gravity at the source of the seeds of cosmic structure? J. Phys. Conf. Ser. 67, 012054 (2007) · doi:10.1088/1742-6596/67/1/012054
[33] Sudarsky, D.: The seeds of cosmic structure as a door to new physics. J. Phys. Conf. Ser. 68, 012029 (2007) · doi:10.1088/1742-6596/68/1/012029
[34] Mukhanov, V.F.: Gravitational instability of the universe filled with a scalar field. JETP Lett. 41, 493 (1985)
[35] Sasaki, M.: Large scale quantum fluctuations in the inflationary universe. Prog. Theor. Phys. 76, 1036 (1986) · doi:10.1143/PTP.76.1036
[36] Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581 (1996) · Zbl 0855.53046 · doi:10.1007/BF02105068
[37] Diósi, L.: Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A 105, 199 (1984) · doi:10.1016/0375-9601(84)90397-9
[38] Bassi, A., Ghirardi, G.C.: Dynamical reduction models. Phys. Rept. 379, 257 (2003) · Zbl 1034.81004 · doi:10.1016/S0370-1573(03)00103-0
[39] Gambini, R., Porto, R.A., Pullin, J.: Realistic clocks, universal decoherence an the black hole information paradox. Phys. Rev. Lett. 93, 240401 (2004) · Zbl 1065.83039 · doi:10.1103/PhysRevLett.93.240401
[40] Gambini, R., Porto, R.A., Pullin, J.: Fundamental decoherence from relational time in discrete quantum gravity: galilean covariance. Phys. Rev. D 70, 124001 (2004) · Zbl 1119.83321 · doi:10.1103/PhysRevD.70.124001
[41] Hu, B.L., Jacobson, T.: Directions in General Relativity. Cambridge University Press, UK (1993) · Zbl 0856.53053
[42] Ashtekar, A.: Quantum Geometry and Gravity: Recent Advances. ArXiv gr-qc/0112038 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.