zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pareto design of decoupled sliding-mode controllers for nonlinear systems based on a multiobjective genetic algorithm. (English) Zbl 1254.90214
Summary: We present a Pareto design of decoupled sliding-mode controllers based on a multiobjective genetic algorithm for several fourth-order coupled nonlinear systems. In order to achieve an optimum controller, at first, the decoupled sliding mode controller is applied to stablize the fourth-order coupled nonlinear systems at the equilibrium point. Then, the multiobjective genetic algorithm is applied to search the optimal coefficients of the decoupled sliding-mode control to improve the performance of the control system. Considered objective functions are the angle and distance errors. Finally, the simulation results implemented in the MATLAB software environment are presented for the inverted pendulum, ball and beam, and seesaw systems to assure the effectiveness of this technique.
MSC:
90C29Multi-objective programming; goal programming
93D05Lyapunov and other classical stabilities of control systems
Software:
Matlab
WorldCat.org
Full Text: DOI
References:
[1] J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ, USA, 1991. · Zbl 0753.93036
[2] Z. Gao and S. X. Ding, “Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems,” Automatica, vol. 43, no. 5, pp. 912-920, 2007. · Zbl 1117.93019 · doi:10.1016/j.automatica.2006.11.018
[3] Z. Gao, X. Shi, and S. X. Ding, “Fuzzy state/disturbance observer design for T-S fuzzy systems with application to sensor fault estimation,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 38, no. 3, pp. 875-880, 2008. · doi:10.1109/TSMCB.2008.917185
[4] M. J. Mahmoodabadi, A. Bagheri, S. Arabani Mostaghim, and M. Bisheban, “Simulation of stability using Java application for Pareto design of controllers based on a new multi-objective particle swarm optimization,” Mathematical and Computer Modelling, vol. 54, no. 5-6, pp. 1584-1607, 2011. · Zbl 1228.90158 · doi:10.1016/j.mcm.2011.04.032
[5] J. C. Lo and Y. H. Kuo, “Decoupled fuzzy sliding-mode control,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 3, pp. 426-435, 1998.
[6] A. Bagheri and J. J. Moghaddam, “Decoupled adaptive neuro-fuzzy (DANF) sliding mode control system for a Lorenz chaotic problem,” Expert Systems with Applications, vol. 36, no. 3, pp. 6062-6068, 2009. · doi:10.1016/j.eswa.2008.06.123
[7] N. H. Moin, A. S. I. Zinober, and P. J. Harley, “Sliding mode control design using genetic algorithms,” in Proceedings of the 1st IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications (GALESIA ’95), vol. 414, pp. 238-244, September 1995.
[8] C. C. Wong and S. Y. Chang, “Parameter selection in the sliding mode control design using genetic algorithms,” Tamkang Journal of Science and Engineering, vol. 1, no. 2, pp. 115-122, 1998.
[9] P. C. Chen, C. W. Chen, and W. L. Chiang, “GA-based suzzy sliding mode controller for nonlinear systems,” Mathematical Problems in Engineering, vol. 2008, Article ID 325859, 16 pages, 2008. · Zbl 1162.93367 · doi:10.1155/2008/325859 · eudml:55485
[10] J. Javadi-Moghaddam and A. Bagheri, “An adaptive neuro-fuzzy sliding mode based genetic algorithm control system for under water remotely operated vehicle,” Expert Systems with Applications, vol. 37, no. 1, pp. 647-660, 2010. · doi:10.1016/j.eswa.2009.06.015
[11] H. K. Khalil, Nonlinear Systems, MacMillan, New York, NY, USA, 1992. · Zbl 0969.34001
[12] N. Yagiz and Y. Hacioglu, “Robust control of a spatial robot using fuzzy sliding modes,” Mathematical and Computer Modelling, vol. 49, no. 1-2, pp. 114-127, 2009. · Zbl 1165.93326 · doi:10.1016/j.mcm.2008.05.050
[13] W. S. Lin and C. S. Chen, “Robust adaptive sliding mode control using fuzzy modelling for a class of uncertain MIMO nonlinear systems,” IEE Proceedings: Control Theory and Applications, vol. 149, no. 3, pp. 193-202, 2002. · doi:10.1049/ip-cta:20020236
[14] J. Jing and Q. H. Wuan, “Intelligent sliding mode control algorithm for position tracking servo system,” International Journal of Information Technology, vol. 12, no. 7, pp. 57-62, 2006.
[15] V. I. Utkin and H. C. Chang, “Sliding mode control on electro-mechanical systems,” Mathematical Problems in Engineering, vol. 8, no. 4-5, pp. 451-473, 2002. · Zbl 1125.93324 · doi:10.1080/10241230306724
[16] N. F. Al-Muthairi and M. Zribi, “Sliding mode control of a magnetic levitation system,” Mathematical Problems in Engineering, vol. 2004, no. 2, pp. 93-107, 2004. · Zbl 1130.93324 · doi:10.1155/S1024123X04310033 · eudml:53770
[17] Z. L. Wan, Y. Y. Hou, T. L. Liao, and J. J. Yan, “Partial finite-time synchronization of switched stochastic Chua’s circuits via sliding-mode control,” Mathematical Problems in Engineering, vol. 2011, Article ID 162490, 13 pages, 2011. · doi:10.1155/2011/162490
[18] C. Pukdeboon, “Optimal sliding mode controllers for attitude stabilization of flexible spacecraft,” Mathematical Problems in Engineering, vol. 2011, Article ID 863092, 20 pages, 2011. · Zbl 1235.93058 · doi:10.1155/2011/863092
[19] M. Dotoli, P. Lino, and B. Turchiano, “A decoupled fuzzy sliding mode approach to swing-up and stabilize an inverted pendulum, The CSD03,” in Proceedings of the 2nd IFAC Conference on Control Systems Design, pp. 113-120, Bratislava, Slovak Republic, 2003.
[20] J. S. Arora, Introduction to Optimum Design, McGraw-Hill, New York, NY, USA, 1989.
[21] S. S. Rao, Engineering Optimization: Theory and Practice, Wiley, NewYork, NY, USA, 1996.
[22] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, Mass, USA, 1989. · Zbl 0721.68056
[23] T. Back, D. B. Fogel, and Z. Michalewicz, Handbook of Evolutionary Computation, Institute of Physics Publishing, New York, NY, USA, Oxford University Press, Oxford, UK, 1997.
[24] G. Renner and A. Ekárt, “Genetic algorithms in computer aided design,” Computer Aided Design, vol. 35, no. 8, pp. 709-726, 2003. · doi:10.1016/S0010-4485(03)00003-4
[25] P. J. Fleming and R. C. Purshouse, “Evolutionary algorithms in control systems engineering: a survey,” Control Engineering Practice, vol. 10, no. 11, pp. 1223-1241, 2002. · doi:10.1016/S0967-0661(02)00081-3
[26] C. M. Fonseca and P. J. Fleming, “Multiobjective optimal controller design with genetic algorithms,” in Proceedings of the International Conference on Control, vol. 1, pp. 745-749, March 1994.
[27] G. Sánchez, M. Villasana, and M. Strefezza, “Multi-objective pole placement with evolutionary algorithms,” Lecture Notes in Computer Science, vol. 4403, pp. 417-427, 2007.
[28] E. Alfaro-Cid, E. W. McGookin, D. J. Murray-Smith, and T. I. Fossen, “Genetic algorithms optimisation of decoupled Sliding Mode controllers: simulated and real results,” Control Engineering Practice, vol. 13, no. 6, pp. 739-748, 2005. · doi:10.1016/j.conengprac.2004.07.004
[29] N. Srinivas and K. Deb, “Multiobjective optimization using nondominated sorting in genetic algorithms,” Evolutionary Computation, vol. 2, no. 3, pp. 221-248, 1994.
[30] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multi-objective optimization: formulation, discussion and generalization,” in Proceedings of the 5th International Conference On genetic Algorithms, S. Forrest, Ed., pp. 416-423, Morgan Kaufmann, San Mateo, Calif, USA, 1993.
[31] C. A. Coello and A. D. Christiansen, “Multiobjective optimization of trusses using genetic algorithms,” Computers and Structures, vol. 75, no. 6, pp. 647-660, 2000. · doi:10.1016/S0045-7949(99)00110-8
[32] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont, Evolutionary Algorithms for Solving Multi-Objective Problems, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002. · Zbl 1130.90002
[33] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002. · doi:10.1109/4235.996017
[34] A. Toffolo and E. Benini, “Genetic diversity as an objective in multi-objective evolutionary algorithms,” Evolutionary Computation, vol. 11, no. 2, pp. 151-167, 2003. · doi:10.1162/106365603766646816
[35] C. A. Coello Coello and R. L. Becerra, “Evolutionary multiobjective optimization using a cultural algorithm,” in Proceedings of the IEEE Swarm Intelligence Symposium, pp. 6-13, IEEE Service Center, Piscataway, NJ, USA, 2003.
[36] K. Atashkari, N. Nariman-Zadeh, A. Pilechi, A. Jamali, and X. Yao, “Thermodynamic Pareto optimization of turbojet engines using multi-objective genetic algorithms,” International Journal of Thermal Sciences, vol. 44, no. 11, pp. 1061-1071, 2005. · doi:10.1016/j.ijthermalsci.2005.03.016