×

zbMATH — the first resource for mathematics

Well-posedness under relaxed semicontinuity for bilevel equilibrium and optimization problems with equilibrium constraints. (English) Zbl 1254.90244
In the paper, the authors first consider equilibrium problems with equilibrium constraints in a topological space setting. By using special continuity properties they establish sufficient conditions for well-posedness of these problems. The results are adjusted for metric settings. Further, they are applied for obtaining well-posedness conditions for optimization problems with equilibrium constraints.

MSC:
90C31 Sensitivity, stability, parametric optimization
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
90C48 Programming in abstract spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hadamard, J.: Sur le problèmes aux dérivees partielles et leur signification physique. Bull. Univ. Princeton 13, 49–52 (1902)
[2] Tikhonov, A.N.: On the stability of the functional optimization problem. USSR Comput. Math. Math. Phys. 6, 28–33 (1966) · Zbl 0212.23803 · doi:10.1016/0041-5553(66)90003-6
[3] Revalski, J.P.: Hadamard and strong well-posedness for convex programs. SIAM J. Optim. 7, 519–526 (1997) · Zbl 0873.49011 · doi:10.1137/S1052623495286776
[4] Ioffe, A., Lucchetti, R.E.: Typical convex program is very well-posed. Math. Program., Ser. B 104, 483–499 (2005) · Zbl 1082.49030 · doi:10.1007/s10107-005-0625-0
[5] Ioffe, A., Lucchetti, R.E., Revalski, J.P.: Almost every convex or quadratic programming problem is well-posed. Math. Oper. Res. 29, 369–382 (2004) · Zbl 1082.49031 · doi:10.1287/moor.1030.0080
[6] Crespi, G.P., Guerraggio, A., Rocca, M.: Well-posedness in vector optimization problems and vector variational inequalities. J. Optim. Theory Appl. 132, 213–226 (2007) · Zbl 1119.49025 · doi:10.1007/s10957-006-9144-2
[7] Morgan, J., Scalzo, V.: Discontinuous but well-posed optimization problems. SIAM J. Optim. 17, 861–870 (2006) · Zbl 1119.49026 · doi:10.1137/050636358
[8] Zolezzi, T.: Well-posedness criteria in optimization with applications to the calculus of variations. Nonlinear Anal. 25, 437–453 (1995) · Zbl 0841.49005 · doi:10.1016/0362-546X(94)00142-5
[9] Zolezzi, T.: Well-posedness and optimization under perturbations. Ann. Oper. Res. 101, 351–361 (2001) · Zbl 0996.90081 · doi:10.1023/A:1010961617177
[10] Zolezzi, T.: On well-posedness and conditioning in optimization. Z. Angew. Math. Mech. 84, 435–443 (2004) · Zbl 1045.49025 · doi:10.1002/zamm.200310113
[11] Morgan, J., Scalzo, V.: Pseudocontinuity in optimization and nonzero sum games. J. Optim. Theory Appl. 120, 181–197 (2004) · Zbl 1090.91006 · doi:10.1023/B:JOTA.0000012738.90889.5b
[12] Fang, Y.P., Hu, R., Huang, N.J.: Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints. Comput. Math. Appl. 55, 89–100 (2008) · Zbl 1179.49007 · doi:10.1016/j.camwa.2007.03.019
[13] Ceng, L.C., Hadjisavvas, N., Schaible, S., Yao, J.C.: Well-posedness for mixed quasivariational-like inequalities. J. Optim. Theory Appl. 139, 109–225 (2008) · Zbl 1157.49033 · doi:10.1007/s10957-008-9428-9
[14] Fang, Y.P., Huang, N.J., Yao, J.C.: Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems. J. Glob. Optim. 41, 117–133 (2008) · Zbl 1149.49009 · doi:10.1007/s10898-007-9169-6
[15] Lignola, M.B.: Well-posedness and L-well-posedness for quasivariational inequalities. J. Optim. Theory Appl. 128, 119–138 (2006) · Zbl 1093.49005 · doi:10.1007/s10957-005-7561-2
[16] Yu, J., Yang, H., Yu, C.: Well-posed Ky Fan’s point, quasivariational inequality and Nash equilibrium points. Nonlinear Anal. 66, 777–790 (2007) · Zbl 1125.91009 · doi:10.1016/j.na.2005.10.018
[17] Lignola, M.B., Morgan, J.: \(\alpha\)-Well-posedness for Nash equilibria and for optimization problems with Nash equilibrium constraints. J. Glob. Optim. 36, 439–459 (2006) · Zbl 1105.49029 · doi:10.1007/s10898-006-9020-5
[18] Margiocco, M., Patrone, F., Pusillo Chicco, L.: A new approach to Tikhonov well-posedness for Nash equilibria. Optimization 40, 385–400 (1997) · Zbl 0881.90136 · doi:10.1080/02331939708844321
[19] Anh, L.Q., Khanh, P.Q., Van, D.T.M., Yao, J.C.: Well-posedness for vector quasiequilibria. Taiwan. J. Math. 13, 713–737 (2009) · Zbl 1176.49030
[20] Kimura, K., Liou, Y.C., Wu, S.Y., Yao, J.C.: Well-posedness for parametric vector equilibrium problems with applications. J. Ind. Manag. Optim. 4, 313–327 (2008) · Zbl 1161.90479 · doi:10.3934/jimo.2008.4.313
[21] Outrata, J.V.: A generalized mathematical program with equilibrium constraints. SIAM J. Control Optim. 38, 1623–1638 (2000) · Zbl 0968.49012 · doi:10.1137/S0363012999352911
[22] Mordukhovich, B.S.: Characterizations of linear suboptimality for mathematical programs with equilibrium constraints. Math. Program., Ser. B 120, 261–283 (2009) · Zbl 1169.90021 · doi:10.1007/s10107-007-0150-4
[23] Lignola, M.B., Morgan, J.: Well-posedness for optimization problems with constraints defined by variational inequalities having a unique solution. J. Glob. Optim. 16, 57–67 (2000) · Zbl 0960.90079 · doi:10.1023/A:1008370910807
[24] Bao, T.Q., Gupta, P., Mordukhovich, B.S.: Necessary conditions in multiobjective optimization with equilibrium constraints. J. Optim. Theory Appl. 135, 179–203 (2007) · Zbl 1146.90508 · doi:10.1007/s10957-007-9209-x
[25] Anh, L.Q., Khanh, P.Q.: Semicontinuity of the solution sets to parametric quasiequilibrium problems. J. Math. Anal. Appl. 294, 699–711 (2004) · Zbl 1048.49004 · doi:10.1016/j.jmaa.2004.03.014
[26] Khanh, P.Q., Luu, L.M.: Lower semicontinuity and upper semicontinuity of the solution sets to parametric multivalued quasivariational inequalities. J. Optim. Theory Appl. 133, 329–339 (2007) · Zbl 1146.49006 · doi:10.1007/s10957-007-9190-4
[27] Anh, L.Q., Khanh, P.Q.: Semicontinuity of solution sets to parametric quasivariational inclusions with applications to traffic networks, II: Lower semicontinuities, applications. Set-Valued Anal. 16, 943–960 (2008) · Zbl 1156.90443 · doi:10.1007/s11228-008-0082-z
[28] Hai, N.X., Khanh, P.Q.: Existence of solutions to general quasiequilibrium problems and applications. J. Optim. Theory Appl. 133, 317–327 (2007) · Zbl 1146.49004 · doi:10.1007/s10957-007-9170-8
[29] Hai, N.X., Khanh, P.Q.: The solution existence of general variational inclusion problems. J. Math. Anal. Appl. 328, 1268–1277 (2007) · Zbl 1108.49020 · doi:10.1016/j.jmaa.2006.06.058
[30] Hai, N.X., Khanh, P.Q., Quan, N.H.: On the existence of solutions to quasivariational inclusion problems. J. Glob. Optim. 45, 565–581 (2009) · Zbl 1190.49009 · doi:10.1007/s10898-008-9390-y
[31] Birbil, S.I., Bouza, G., Frenk, J.B.G., Still, G.: Equilibrium constrained optimization problems. Eur. J. Oper. Res. 169, 1108–1128 (2006) · Zbl 1079.90152 · doi:10.1016/j.ejor.2004.07.075
[32] Mordukhovich, B.S.: Equilibrium problems with equilibrium constraints via multiobjective optimization. Optim. Methods Softw. 19, 479–492 (2004) · Zbl 1168.90624 · doi:10.1080/1055678042000218966
[33] Mordukhovich, B.S.: Optimization and equilibrium problems with equilibrium constraints in infinite-dimensional spaces. Optimization 57, 1–27 (2008) · Zbl 1161.49015 · doi:10.1080/02331930701778635
[34] Mordukhovich, B.S.: Multiobjective optimization problems with equilibrium constraints. Math. Program. 117, 331–354 (2009) · Zbl 1165.90020 · doi:10.1007/s10107-007-0172-y
[35] Outrata, J.V., Kocvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic, Dordrecht (1998)
[36] Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Nonlinear Parametric Optimization. Birkhäuser, Basel (1983) · Zbl 0502.49002
[37] Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, 3rd edn. Springer, Berlin (2009)
[38] Anh, L.Q., Khanh, P.Q., Van, D.T.M.: Well-posedness without semicontinuity for parametric quasiequilibria and quasioptimization. Comput. Math. Appl. 62, 2045–2057 (2011) · Zbl 1231.49022 · doi:10.1016/j.camwa.2011.06.047
[39] Khanh, P.Q., Luc, D.T., Tuan, N.D.: Local uniqueness of solutions for equilibrium problems. Adv. Nonlinear Var. Inequal. 9, 13–27 (2006) · Zbl 1181.49010
[40] Khanh, P.Q., Tung, L.T.: Local uniqueness of solutions to vector equilibrium problems using approximations. J. Optim. Theory Appl. Submitted for publication · Zbl 1271.90082
[41] Danes, J.: On the Istrǎtescu measure of noncompactness. Bull. Math. Soc. R.S. Roumanie 16, 403–406 (1972) · Zbl 0293.54038
[42] Banas, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics, vol. 60. Marcel Dekker, New York-Basel (1980) · Zbl 0441.47056
[43] Rakocěvíc, V.: Measures of noncompactness and some applications. Filomat 12, 87–120 (1998) · Zbl 1009.47047
[44] Jongen, H.T., Weber, G.W.: Nonlinear optimization: characterization of structural stability. J. Glob. Optim. 1, 47–64 (1991) · Zbl 0745.90067 · doi:10.1007/BF00120665
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.