zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission. (English) Zbl 1254.92085
Summary: The dynamics of multi-group SEIR epidemic models with distributed and infinite delay and nonlinear transmission are investigated. We derive the basic reproduction number $R_{0}$ and establish that the global dynamics are completely determined by the values of $R_{0}$: if $R_{0}\le 1$, then the disease-free equilibrium is globally asymptotically stable; if $R_{0}>1$, then there exists a unique endemic equilibrium which is globally asymptotically stable. Our results contain those for single-group SEIR models with distributed and infinite delays. In the proof of global stability of the endemic equilibrium, we exploit a graph-theoretical approach to the method of Lyapunov functionals. The biological significance of the results is also discussed.

37N25Dynamical systems in biology
Full Text: DOI
[1] Lloyd, A. L.; Jansen, V. A. A.: Spatiotemporal dynamics of epidemics: synchrony in metapopulation models, Math. biosci. 188, 1-16 (2004) · Zbl 1036.92029 · doi:10.1016/j.mbs.2003.09.003
[2] Lloyd, A. L.; May, R. M.: Spatial heterogeneity in epidemic models, J. theoret. Biol. 179, 1-11 (1996)
[3] Thieme, H. R.: Mathematics in population biology, (2003) · Zbl 1054.92042
[4] Lajmanovich, A.; York, J. A.: A deterministic model for gonorrhea in a nonhomogeneous population, Math. biosci. 28, 221-236 (1976) · Zbl 0344.92016 · doi:10.1016/0025-5564(76)90125-5
[5] Beretta, E.; Capasso, V.: Global stability results for a multigroup SIR epidemic model, Mathematical ecology, 317-342 (1988) · Zbl 0684.92015
[6] Hethcote, H. W.: An immunization model for a heterogeneous population, Theor. popul. Biol. 14, 338-349 (1978) · Zbl 0392.92009
[7] Hethcote, H. W.; Thieme, H. R.: Stability of the endemic equilibrium in epidemic models with subpopulations, Math. biosci. 75, 205-227 (1985) · Zbl 0582.92024 · doi:10.1016/0025-5564(85)90038-0
[8] Lin, X.; So, J. W. -H.: Global stability of the endemic equilibrium and uniform persistence in epidemic models with subpopulations, J. aust. Math. soc. Ser. B 34, 282-295 (1993) · Zbl 0778.92020 · doi:10.1017/S0334270000008900
[9] Huang, W.; Cooke, K. L.; Castillo-Chavez, C.: Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission, SIAM J. Appl. math. 52, 835-854 (1992) · Zbl 0769.92023 · doi:10.1137/0152047
[10] Guo, H.; Li, M. Y.; Shuai, Z.: Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. appl. Math. Q. 14, 259-284 (2006) · Zbl 1148.34039
[11] Guo, H.; Li, M. Y.; Shuai, Z.: A graph-theoretic approach to the method of global Lyapunov functions, Proc. amer. Math. soc. 136, 2793-2802 (2008) · Zbl 1155.34028 · doi:10.1090/S0002-9939-08-09341-6
[12] Li, M. Y.; Shuai, Z.; Wang, C.: Global stability of multi-group epidemic models with distributed delays, J. math. Anal. appl. 361, 38-47 (2010) · Zbl 1175.92046 · doi:10.1016/j.jmaa.2009.09.017
[13] Liu, S.; Wang, S.; Wang, L.: Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, Nonlinear anal. RWA 12, 119-127 (2011) · Zbl 1208.34125 · doi:10.1016/j.nonrwa.2010.06.001
[14] Ding, D.; Ding, X.: Global stability of multi-group vaccination epidemic models with delays, Nonlinear anal. RWA 12, 1991-1997 (2011) · Zbl 1215.92038 · doi:10.1016/j.nonrwa.2010.12.015
[15] Kuniya, T.: Global stability analysis with a discretization approach for an age-structured multigroup SIR epidemic model, Nonlinear anal. RWA 12, 2640-2655 (2011) · Zbl 1219.35330 · doi:10.1016/j.nonrwa.2011.03.011
[16] Zhou, L.; Fan, M.: Dynamics of an SIR epidemic model with limited medical resources revisited, Nonlinear anal. RWA 13, 312-324 (2012) · Zbl 1238.37041
[17] Wang, L.; Chen, L.; Nieto, J. J.: The dynamics of an epidemic model for pest control with impulsive effect, Nonlinear anal. RWA 11, 1374-1386 (2010) · Zbl 1188.93038 · doi:10.1016/j.nonrwa.2009.02.027
[18] Gao, S.; Liu, Y.; Nieto, J. J.; Andrade, H.: Seasonality and mixed vaccination strategy in an epidemic model with vertical transmission, Math. comput. Simul. 81, 1855-1868 (2011) · Zbl 1217.92066 · doi:10.1016/j.matcom.2010.10.032
[19] Röst, G.; Wu, J.: SEIR epidemiological with varying infectivity and infinite delay, Math. biosci. Eng. 5, 389-402 (2008) · Zbl 1165.34421 · doi:10.3934/mbe.2008.5.389 · http://aimsciences.org/journals/redirecting.jsp?paperID=3256
[20] Atkinson, F. V.; Haddock, J. R.: On determining phase spaces for functional differential equations, Funkcial. ekvac. 31, 331-347 (1988) · Zbl 0665.45004
[21] Hino, Y.; Murakami, S.; Naito, T.: Functional differential equations with infinite delay, Lecture notes in math. 1473 (1991) · Zbl 0732.34051
[22] Hale, J.; Lunel, S. Verduyn: Introduction to functional differential equations, Applied mathematical sciences (1993) · Zbl 0787.34002
[23] Diekmann, O.; Heesterbeek, J. A. P.; Metz, J. A. J.: On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. math. Biol. 28, 365-382 (1990) · Zbl 0726.92018 · doi:10.1007/BF00178324
[24] Haddock, J. R.; Terjéki, J.: Liapunov--razumikhin functions and an invariance principle for functional-differential equations, J. differential equations 48, 95-122 (1983) · Zbl 0531.34058 · doi:10.1016/0022-0396(83)90061-X
[25] Haddock, J. R.; Krisztin, T.; Terjéki, J.: Invariance principles for autonomous functional-differential equations, J. integral equations 10, 123-136 (1985) · Zbl 0592.34047
[26] Ruess, W. M.; Summers, W. H.: Linearized stability for abstract differential equations with delay, J. math. Anal. appl. 198, 310-336 (1996) · Zbl 0861.34046 · doi:10.1006/jmaa.1996.0085
[27] Li, M. Y.; Graef, J. R.; Wang, L. C.; Karsai, J.: Global dynamics of a SEIR model with a varying total population size, Math. biosci. 160, 191-213 (1999) · Zbl 0974.92029 · doi:10.1016/S0025-5564(99)00030-9
[28] Bhatia, N. P.; Szegö, G. P.: Dynamical systems: stability theory and applications, Lecture notes in mathematics 35 (1967) · Zbl 0155.42201
[29] Smith, H. L.; Waltman, P.: The theory of the chemostat: dynamics of microbial competition, (1995) · Zbl 0860.92031
[30] Li, M. Y.; Shuai, Z.: Global-stability problem for coupled systems of differential equations on networks, J. differential equations 248, 1-20 (2010) · Zbl 1190.34063 · doi:10.1016/j.jde.2009.09.003