zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Consensus of second-order and high-order discrete-time multi-agent systems with random networks. (English) Zbl 1254.93011
Summary: This paper studies the convergence and convergence speed for the second-order and the high-order discrete-time multi-agent systems with random networks and arbitrary weights. Random networks mean that the existence of any edge is probabilistic and independent of any other edge. By introducing the agreement set, velocity control gain and high-order state control gain, some consensus protocols are provided for the discrete-time random networks. Moreover, per-step and asymptotic convergence factors are proposed to measure the convergence and convergence speed. Some examples and simulation results are given to illustrate the effectiveness of the obtained theoretical results.

93A14Decentralized systems
68T42Agent technology (AI aspects)
93C55Discrete-time control systems
Full Text: DOI
[1] Olfati-Saber, R.; Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays, IEEE transactions on automatic control 49, No. 9, 1520-1533 (2004)
[2] Wu, Z. -P.; Guan, Z. -H.; Wu, X. -Y.: Consensus problem in multi-agent systems with physical position neighbourhood evolving network, Physica A 379, 681-690 (2007)
[3] Carli, R.; Fagnani, F.; Frasca, P.; Zampieri, S.: Gossip consensus algorithms via quantized communication, Automatica 46, 70-80 (2010) · Zbl 1214.93122 · doi:10.1016/j.automatica.2009.10.032
[4] Wu, Z. -P.; Guan, Z. -H.; Wu, X. -Y.; Li, T.: Consensus based formation control and trajectory tracing of multi-agent robot systems, Journal of intelligent and robotic systems 48, 397-410 (2007)
[5] Li, T.; Zhang, J. -F.: Mean square average-consensus under measurement noises and fixed topologies: necessary and sufficient conditions, Automatica 45, 1929-1936 (2009) · Zbl 1185.93006 · doi:10.1016/j.automatica.2009.04.017
[6] Guan, Z. -H.; Liu, Z. -W.; Feng, G.; Wang, Y. -W.: Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control, IEEE transactions on circuits and systems I: Regular papers 57, No. 8, 2182-2195 (2010)
[7] Porfiri, M.; Stilwell, D. J.: Consensus seeking over random weighted directed graphs, IEEE transactions on automatic control 52, No. 9, 1767-1773 (2007)
[8] Yang, M.; Wang, Y. -W.; Xiao, J. -W.; Wang, H. O.: Robust synchronization of impulsively-coupled complex switched networks with parametric uncertainties and time-varying delays, Nonlinear analysis. Real world applications 11, 3008-3020 (2010) · Zbl 1214.93055 · doi:10.1016/j.nonrwa.2009.10.021
[9] Song, Q.; Chen, G.; Ho, Daniel W. C.: Consensus over a random network generated by i.i.d. Stochasticmatrices, Networking and Internet architecture, No. April, 1-14 (2010)
[10] Abaid, N.; Porfiri, M.: Consensus over numerosity-constrained random networks, IEEE transactions on automatic control 56, No. 3, 649-654 (2011) · Zbl 1268.93005
[11] Hatano, Y.; Mesbahi, M.: Agreement over random network, IEEE transactions on automatic control 50, No. 11, 1867-1872 (2005)
[12] Zhou, J.; Wang, Q.: Convergence speed in distributed consensus over dynamically switching random networks, Automatica 45, 1455-1461 (2009) · Zbl 1166.93382 · doi:10.1016/j.automatica.2009.01.021
[13] Yang, X.; Cao, J.; Lu, J. Q.: Synchronization of delayed complex dynamical networks with impulsive and stochastic effects, Nonlinear analysis. Real world applications 12, No. 4, 2252-2266 (2011) · Zbl 1223.37115 · doi:10.1016/j.nonrwa.2011.01.007
[14] Guan, Z. -H.; Ding, L.; Kong, Z. -M.: Multi-radius geographical spatial networks: statistical characteristics and application to wireless sensor networks, Physica A 389, 198-204 (2010)
[15] Wu, Y.; Guan, Z. -H.: On dissipativity and stabilization of time-delay stochastic systems with switching control, Nonlinear analysis. Real world applications 12, 2031-2039 (2011) · Zbl 1225.93118 · doi:10.1016/j.nonrwa.2010.12.019
[16] Tahbaz-Salehi, A.; Jadbabaie, A.: A necessary and sufficient condition for consensus over random networks, IEEE transactions on automatic control 53, No. 3, 791-795 (2008)
[17] Ren, W.; Atkins, E.: Distributed multi-vehicle coordinated control via local information exchange, International journal of robust and nonlinear control 17, 1002-1033 (2007) · Zbl 1266.93010
[18] Cao, Y. -C.; Ren, W.: Multi-vehicle coordination for double-integrator dynamics under fixed undirected/directed interaction in a sampled-data setting, International journal of robust and nonlinear control 20, No. 9, 987-1000 (2010) · Zbl 1298.93225
[19] Hong, Y. G.; Chen, G.; Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks, Automatica 44, No. 3, 846-850 (2008) · Zbl 1283.93019
[20] Zhang, Y.; Tian, Y. -P.: Consentability and protocol design of multi-agent systems with stochastic switching topology, Automatica 45, 1195-1201 (2009) · Zbl 1162.94431 · doi:10.1016/j.automatica.2008.11.005
[21] Hu, J. P.; Hong, Y. G.: Leader-following coordination of multiagent systems with coupling time delays, Physica A 374, 853-863 (2007)
[22] P. Lin, Y.M. Jia, J.P. Du, S.Y. Yuan, Distributed consensus control for second-order agents with fixed topology and time-delay, in: Proc. 26th Chinese Control Conf., 2007, pp. 577--581.
[23] Xiao, L.; Boyd, S.: Fast linear iterations for distributed averaging, Systems and control letters 53, No. 1, 65-78 (2004) · Zbl 1157.90347 · doi:10.1016/j.sysconle.2004.02.022
[24] Kushner, H. J.: Introduction to stochastic control, (1971) · Zbl 0293.93018
[25] Mahmoud, M.: Active fault tolerant control systems: stochastic analysis and synthesis, (2003) · Zbl 1036.93002