×

One input control for exponential synchronization in generalized Lorenz systems with uncertain parameters. (English) Zbl 1254.93063

Summary: By taking account of uncertain slave system parameters, the main goal of this paper is to investigate exponential master-slave synchronization between two nearly identical generalized Lorenz systems via one control input including a single state proportional feedback, associated with system parameter estimated laws, which not include states of the master system. Sufficient conditions are provided for the guaranteed exponential stability of both synchronized errors and system parameter errors. Meanwhile, numerical studies are also performed to verify the effectiveness of presented schemes.

MSC:

93B15 Realizations from input-output data
93D20 Asymptotic stability in control theory
93C05 Linear systems in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Physical Review Letters, 64, 8, 821-828 (1990) · Zbl 0938.37019
[2] Pan, L.; Zhou, W.; Fang, J., On dynamics analysis of a novel three-scroll chaotic attractor, Journal of the Franklin Institute, 347, 508-522 (2010) · Zbl 1193.34088
[3] Li, X.; Ding, C.; Zhu, Q., Synchronization of stochastic perturbed chaotic neural networks with mixed delays, Journal of the Franklin Institute, 347, 1266-1280 (2010) · Zbl 1202.93057
[4] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Physical Review Letters, 64, 11, 1196-1199 (1990) · Zbl 0964.37501
[5] Wu, Y.; Zhou, X.; Chen, J.; Hui, B., Chaos synchronization of a new 3D chaotic system, Chaos, Solitons and Fractals, 42, 1812-1819 (2009) · Zbl 1198.93020
[6] Zhou, Z.; Hu, C.; Chen, M.; He, M., A robust APD synchronization scheme and its application to secure communication, Journal of the Franklin Institute, 346, 808-817 (2009) · Zbl 1298.93190
[7] Liao, T. L.; Lin, S. H., Adaptive control and synchronization of Lorenz systems, Journal of the Franklin Institute, 336, 925-937 (1999) · Zbl 1051.93514
[8] Han, X.; Lu, J. A.; Wu, X., Adaptive feedback synchronization of Lü system, Chaos, Solitons and Fractals, 22, 221-227 (2004) · Zbl 1060.93524
[9] Zhang, G.; Liu, Z.; Zhan, J., Adaptive synchronization of a class of continuous chaotic systems with uncertain parameters, Physica Letters A, 372, 447-450 (2008) · Zbl 1217.37036
[10] Li, X.; Cao, J., Adaptive synchronization for delayed neural networks with stochastic perturbation, Journal of the Franklin Institute, 345, 779-791 (2008) · Zbl 1169.93350
[11] Yassen, M. T., Chaos control of chaotic dynamical systems using back stepping design, Chaos, Solitons and Fractals, 27, 537-548 (2006) · Zbl 1102.37306
[12] Kemih, K., Control of nuclear spin generator based on passive control, Chaos, Solitons and Fractals, 41, 1897-1901 (2009)
[13] Wu, X.; Li, J.; Chen, G., Chaos in the fractional order unified system and its synchronization, Journal of the Franklin Institute, 345, 392-401 (2008) · Zbl 1166.34030
[14] Gao, H.; Sun, W.; Shi, P., Robust sampled-data H∞ control for vehicle active suspension systems, IEEE Transaction on Control Systems Technology, 18, 238-245 (2010)
[15] Gao, H.; Yang, X.; Shi, P., Multi-objective robust H∞ control of spacecraft rendezvous, IEEE Transaction on Control System Technology, 17, 794-802 (2009)
[16] Yang, X.; Gao, H.; Shi, P., Robust orbital transfer for low earth orbit spacecraft with small-thrust, Journal of the Franklin Institute, 347, 1863-1887 (2010) · Zbl 1206.93034
[17] Celikovsky, S.; Chen, G., On the generalized Lorenz canonical form, Chaos, Solitons and Fractals, 26, 1271-1276 (2005) · Zbl 1100.37016
[18] Wu, X.; Chen, G.; Cai, J., Chaos synchronization of the master-slave generalized Lorenz systems via linear state error feedback control, Physica D, 229, 52-80 (2007) · Zbl 1131.34040
[19] Lin, J-. S.; Yan, J-. J., Adaptive synchronization for two identical generalized Lorenz chaotic systems via a single controller, Nonlinear Analysis RWA, 10, 1151-1159 (2009) · Zbl 1167.37329
[20] Baek, J., Adaptive fuzzy bilinear feedback control design for synchronization of TS fuzzy bilinear generalized Lorenz system with uncertain parameters, Physica Letters A, 374, 1827-1834 (2010) · Zbl 1236.34088
[21] Khall, H. K., Nonlinear Systems (2002), Prentice Hall: Prentice Hall New Jersey
[22] Liao, X.; Yu, P., Study of globally exponential synchronization for the family of Rössler systems, International Journal of Bifurcation Chaos, 16, 8, 2395-2406 (2006) · Zbl 1192.37042
[23] Yan, Z.; Yu, P., Globally exponential hyperchaos (lag) synchronization in a family of modified hyperchaotic Rössler systems, International Journal of Bifurcation Chaos, 17, 5, 1759-1774 (2007) · Zbl 1139.93028
[24] Sun, Y. J., Exponential synchronization between two classes of chaotic systems, Chaos, Solitons and Fractals, 39, 2363-2368 (2009) · Zbl 1197.37007
[25] Liang, X.; Zhang, J.; Xia, X., Adaptive Synchronization for Generalized Lorenz Systems, IEEE Transactions on Automatic Control, 53, 7, 1740-1746 (2008) · Zbl 1367.93586
[26] Loría, A., A linear time-varying controller for synchronization of Lü chaotic systems with one input, IEEE Transactions on Circuits Systems II, 56, 8, 674-678 (2009)
[27] Oancea, S.; Grosu, F.; Lazar, A.; Grosu, I., Master-slave synchronization of Lorenz systems using a single controller, Chaos, Soliton and Fractals, 41, 2575-2580 (2009) · Zbl 1198.93149
[28] Lorenz, E. N., Deterministic non-periodic flow, Journal of the Atmospheric Science, 20, 130-141 (1963) · Zbl 1417.37129
[29] Chen, G.; Ueta, T., Yet another chaotic attractor, International Journal of Bifurcation Chaos, 9, 7, 1465-1466 (1999) · Zbl 0962.37013
[30] Lu, J.; Chen, G., A new chaotic attractor coined, International Journal of Bifurcation Chaos, 12, 3, 659-661 (2002) · Zbl 1063.34510
[31] Zhou, W.; Xu, Y.; Lu, H.; Pan, L., On dynamics analysis of a new chaotic attractor, Physica Letters A, 372, 5773-5777 (2008) · Zbl 1223.37045
[32] Li, H.; Chen, B.; Zhou, Q.; Qian, W., Robust stability for uncertain delayed fuzzy Hopfield neural networks with Markovian jumping parameters, IEEE Transactions Systems, Man, and Cybernetics Part B, 30, 94-102 (2009)
[33] Li, H.; Gao, H.; Shi, P., New passivity analysis for neural networks with discrete and distributed delays, IEEE Transactions Neural Networks, 21, 1842-1847 (2010)
[34] Yan, Z.; Yu, P., Linear feedback control, adaptive feedback control and their combination for chaos (lag) synchronization of LC chaotic systems, Chaos, Solitons and Fractals, 33, 419-435 (2007) · Zbl 1136.93430
[35] Wang, Z. L.; Shi, X. R., Chaotic bursting lag synchronization of Hindmarsh-Rose system via a single controller, Applied Mathematics and Computation, 215, 1091-1097 (2009) · Zbl 1205.37025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.