zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The interval Lyapunov matrix equation: analytical results and an efficient numerical technique for outer estimation of the united solution set. (English) Zbl 1255.15002
Summary: This note tries to propose an efficient method for obtaining outer estimations for the so-called united solution set of the interval Lyapunov matrix equation $\bold AX+X\bold A^T=\bold F$, where $\bold A$ and $\bold F$ are known real interval matrices while $X$ is the unknown matrix; all of dimension $n \times n$. We first explore the equation in the more general setting of AE-solution sets, and show that only a small part of Shary’s results on the AE-solution sets of interval linear systems can be generalized to the interval Lyapunov matrix equation. Then, we propose our modification of Krawczyk operator which enables us to reduce the computational complexity of obtaining an outer estimation for the united solution set to cubic, provided that the midpoint of $\bold A$ is diagonalizable.

15A06Linear equations (linear algebra)
65F30Other matrix algorithms
65G40General methods in interval analysis
Full Text: DOI
[1] Antoulas, A.: Approximation of large-scale dynamical systems. Advances in design and control (2005) · Zbl 1112.93002
[2] Datta, B. N.: Numerical methods for linear control systems. (2004) · Zbl 1079.65072
[3] D. Kressner, V. Mehrmann, T. Penzl, CTDSX--a collection of benchmark examples for state-space realizations of continuous-time dynamical systems, Tech. Report SLICOT Working Note 1998-9, 1998. http://www.slicot.org/REPORTS/SLWN1998-9.ps.gz.
[4] Penzl, T.: A cyclic low-rank Smith method for large sparse Lyapunov equations. SIAM J. Sci. comput. 21, 1401-1418 (2000) · Zbl 0958.65052
[5] Saad, Y.: Numerical solution of large Lyapunov equations. Proc. of the internat. Symposium MTNS-89 3, 503-511 (1990) · Zbl 0719.65034
[6] Bartels, R. H.; Stewart, G. W.: Algorithm 432: solution of the matrix equation AX+XB=C. Commun. ACM 15, 820-826 (1972)
[7] CODATA Internationally recommended values of the fundamental physical constants, The Physics Laboratory of the National Institute of Standards. Available online at: http://physics.nist.gov/cuu/Constants.
[8] Kearfott, R. B.; Kreinovich, V.: Applications of interval computations. (1996) · Zbl 0841.65031
[9] Rump, S. M.: INTLAB--interval laboratory. Developments in reliable computing, 77-105 (1999) · Zbl 0949.65046
[10] J. Rohn, Verification Software in MATLAB/INTLAB. Available online at: http://uivtx.cs.cas.cz/ rohn/matlab.
[11] Seif, N. P.; Hussein, S. A.; Deif, A. S.: The interval Sylvester matrix equation. Computing 52, 233-244 (1994) · Zbl 0807.65046
[12] Shashikhin, V. N.: Robust stabilization of linear interval systems. J. appl. Math. mech. 66, 393-400 (2002) · Zbl 1066.93020
[13] Shashikhin, V. N.: Robust assignment of poles in large-scale interval systems. Autom. remote control 63, 200-208 (2002) · Zbl 1090.93552
[14] Rohn, J.; Kreinovich, V.: Computing exact componentwise bounds on solutions of linear systems with interval data is NP-hard. SIAM J. Matrix anal. Appl. 16, 415 (1995) · Zbl 0824.65011
[15] Kreinovich, V.; Lakeyev, A.; Rohn, J.; Kahl, P.: Computational complexity and feasiility of data processing and interval computations. (1998) · Zbl 0945.68077
[16] Rohn, J.: Enclosing solutions of linear interval equations is NP-hard. Computing 53, 365-368 (1994) · Zbl 0809.65019
[17] Kearfott, R. B.; Nakano, M. T.; Neumaier, A.; Rump, S. M.; Shary, S. P.; Van Hentenryck, P.: Standardized notation in interval analysis. Reliab. comput. 15, 7-13 (2010) · Zbl 1196.65088
[18] Alefeld, G.; Herzberger, J.: Introduction to interval computations. (1983) · Zbl 0552.65041
[19] Moore, R. E.; Kearfott, R. B.; Cloud, M. J.: Introduction to interval analysis. (2009) · Zbl 1168.65002
[20] Neumaier, A.: Interval methods for systems of equations. (1990) · Zbl 0715.65030
[21] Shary, S. P.: A new technique in systems analysis under interval uncertainty and ambiguity. Reliab. comput. 8, 321-418 (2002) · Zbl 1020.65029
[22] Hashemi, B.; Dehghan, M.: Results concerning interval linear systems with multiple right-hand sides and the interval matrix equation AX=B. J. comput. Appl. math. 235, 2969-2978 (2011) · Zbl 1221.65087
[23] Adams, E.; Kulisch, U.: Scientific computing with automatic result verification. Mathematics in science and engineering 189 (1993) · Zbl 0773.00004
[24] Kearfott, R. B.: Interval analysis: interval Newton methods. Encyclopedia of optimization 3, 76-78 (2001)
[25] Jansson, C.; Rump, S. M.: Rigorous solution of linear programming problems with uncertain data. ZOR, methods models oper. Res. 35, 87-111 (1991) · Zbl 0735.90043
[26] Rump, S. M.: Verification methods for dense and sparse systems of equations. Topics in validated computations, 63-136 (1994) · Zbl 0813.65072
[27] Frommer, A.; Hashemi, B.: Verified computation of square roots of a matrix. SIAM J. Matrix anal. Appl. 31, 1279-1302 (2009) · Zbl 1194.65069
[28] Horn, R. A.; Johnson, C. R.: Topics in matrix analysis. (1991) · Zbl 0729.15001
[29] Rump, S. M.: A note on epsilon-inflation. Reliab. comput. 4, 371-375 (1998) · Zbl 0920.65031
[30] Hodel, A. S.; Poolla, K. P.; Tenison, B.: Numerical solution of the Lyapunov equation by approximate power iteration. Linear algebra appl. 236, 205-230 (1996) · Zbl 0848.65033
[31] Shary, S. P.: Solving the interval tolerance problem. Math. comput. Simul. 39, 53-85 (1995)
[32] Shary, S. P.: Algebraic approach to the interval linear static identification, tolerance and control problems, or one more application of kaucher arithmetic. Reliab. comput. 2, 3-33 (1996) · Zbl 0853.65048
[33] Shary, S. P.: Controllable solution set to interval static systems. Appl. math. Comput. 86, 185-196 (1997) · Zbl 0908.65037
[34] Popova, E.: Quality of the solution sets of parameter-dependent interval linear systems. Z. angew. Math. mech. 82, 723-727 (2002) · Zbl 1013.65042
[35] Popova, E.; Krämer, W.: Inner and outer bounds for the solution set of parametric interval linear systems. J. comput. Appl. math. 199, 310-316 (2007) · Zbl 1108.65027