×

The hypergroupoid semigroups as generalizations of the groupoid semigroups. (English) Zbl 1255.20061

Summary: We introduce the notion of hypergroupoids \((H\text{Bin}(X),\square)\), and show that \((H\text{Bin}(X),\square)\) is a super-semigroup of the semigroup \((\text{Bin}(X),\square)\) via the identification \(x\leftrightarrow\{x\}\). We prove that \((H\text{Bin}^*(X),\ominus,[\varnothing])\) is a BCK-algebra, and obtain several properties of \((H\text{Bin}^*(X),\square)\).

MSC:

20N20 Hypergroups
20N02 Sets with a single binary operation (groupoids)
08A02 Relational systems, laws of composition
03G25 Other algebras related to logic
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. S. Kim and J. Neggers, “The semigroups of binary systems and some perspectives,” Bulletin of the Korean Mathematical Society, vol. 45, no. 4, pp. 651-661, 2008. · Zbl 1172.20047 · doi:10.4134/BKMS.2008.45.4.651
[2] H. F. Fayoumi, “Locally-zero groupoids and the center of Bin (X),” Korean Mathematical Society. Communications, vol. 26, no. 2, pp. 163-168, 2011. · Zbl 1216.20057 · doi:10.4134/CKMS.2011.26.2.163
[3] K. Iséki, “On BCI-algebras,” Mathematics Seminar Notes, vol. 8, no. 1, pp. 125-130, 1980. · Zbl 0473.03059
[4] K. Iséki and S. Tanaka, “An introduction to the theory of BCK-algebras,” Mathematica Japonica, vol. 23, no. 1, pp. 1-26, 1978/79. · Zbl 0385.03051
[5] J. Neggers and H. S. Kim, “On d-algebras,” Mathematica Slovaca, vol. 49, no. 1, pp. 19-26, 1999. · Zbl 0943.06012
[6] J. S. Han, H. S. Kim, and J. Neggers, “Strong and ordinary d-algebras,” Journal of Multiple-Valued Logic and Soft Computing, vol. 16, no. 3-5, pp. 331-339, 2010. · Zbl 1236.06025
[7] J. Zhan, B. Davvaz, and K. P. Shum, “On probabilistic n-ary hypergroups,” Information Sciences, vol. 180, no. 7, pp. 1159-1166, 2010. · Zbl 1192.20066 · doi:10.1016/j.ins.2009.11.038
[8] J. Zhan and Y. L. Liu, “On f-derivations of BCI-algebras,” Mathematica Slovaca, vol. 49, pp. 19-26, 1999.
[9] J. Zhan, S. Sh. Mousavi, and M. Jafarpour, “On hyperactions of hypergroups,” University of Bucharest. Scientific Bulletin A, vol. 73, no. 1, pp. 117-128, 2011. · Zbl 1234.20070
[10] B. Davvaz and V. Leoreanu, Hyperring Theory and Applications, International Academic Press, Palm Harbor, Fla, USA, 2007. · Zbl 1204.16033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.