He, Ji-Huan; Elagan, S. K.; Li, Z. B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. (English) Zbl 1255.26002 Phys. Lett., A 376, No. 4, 257-259 (2012). Summary: The fractional complex transform is suggested to convert a fractional differential equation with Jumarie’s modification of Riemann-Liouville derivative into its classical differential partner. Understanding the fractional complex transform and the chain rule for fractional calculus are elucidated geometrically. Cited in 88 Documents MSC: 26A33 Fractional derivatives and integrals 34K37 Functional-differential equations with fractional derivatives 34M25 Formal solutions and transform techniques for ordinary differential equations in the complex domain Keywords:modified Riemann-Liouville derivative; fractional complex transform; chain rule for fractional calculus PDF BibTeX XML Cite \textit{J.-H. He} et al., Phys. Lett., A 376, No. 4, 257--259 (2012; Zbl 1255.26002) Full Text: DOI OpenURL References: [1] Li, Z.B.; He, J.H., Math. comput. appl., 15, 970, (2010) [2] Li, Z.B., Int. J. nonlinear sci. num., 11, 335, (2010) [3] Li, Z.B.; He, J.H., Nonlinear sci. lett. A, 2, 121, (2011) [4] He, J.H., Phys. lett. A, 375, 3362, (2011) [5] Jafari, H.; Kadkhoda, N.; Tajadodi, H., Int. J. nonlinear sci. num., 11, 271, (2010) [6] Golbabai, A.; Sayevand, K., Nonlinear sci. lett. A, 1, 147, (2010) [7] He, J.H., Comput. methods appl. mech. engrg., 167, 57, (1998) [8] He, J.H., Thermal sci., 15, S1, (2011) [9] He, J.H., Thermal sci., 15, S145, (2011) [10] He, J.H.; Wu, G.C.; Austin, F., Nonlinear sci. lett. A, 1, 1, (2010) [11] Guo, S.; Mei, L., Phys. lett. A, 375, 309, (2011) [12] Wu, G.; Lee, E.W.M., Phys. lett. A, 374, 2506, (2010) [13] Zhang, S.; Zong, Q.-A.; Liu, D.; Gao, Q., Commun. fract. calc., 1, 48, (2010) [14] Hristov, J., Int. rev. chem. eng., 2, 555, (2010) [15] Hristov, J., Thermal sci., 15, S5, (2011) [16] Hristov, J., Thermal sci., 14, 291, (2010) [17] Yang, X., Prog. nonlinear sci., 4, 1, (2011) [18] Gupta, P.K., Nonlinear sci. lett. B, 1, 123, (2011) [19] Das, S.; Gupta, P.K.; Barat, S., Nonlinear sci. lett. B, 1, 129, (2011) [20] Jafari, H., Commun. fract. calc., 2, 9, (2011) [21] Ganji, D.D.; Kachapi, S.H.H., Prog. nonlinear sci., 2, 1, (2011) [22] Ganji, D.D.; Kachapi, S.H.H., Prog. nonlinear sci., 3, 1, (2011) [23] Jumarie, G., Appl. math. lett., 23, 1444, (2010) [24] Jumarie, G., Int. J. systems sci., 6, 1113, (1993) [25] Jumarie, G., J. appl. math. comput., 24, 31, (2007) [26] Jumarie, G., Appl. math. lett., 22, 1659, (2009) [27] He, J.H., Chaos solitons fractals, 36, 542, (2008) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.