×

Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. (English) Zbl 1255.26002

Summary: The fractional complex transform is suggested to convert a fractional differential equation with Jumarie’s modification of Riemann-Liouville derivative into its classical differential partner. Understanding the fractional complex transform and the chain rule for fractional calculus are elucidated geometrically.

MSC:

26A33 Fractional derivatives and integrals
34K37 Functional-differential equations with fractional derivatives
34M25 Formal solutions and transform techniques for ordinary differential equations in the complex domain
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Li, Z. B.; He, J. H., Math. Comput. Appl., 15, 970 (2010) · Zbl 1215.35164
[2] Li, Z. B., Int. J. Nonlinear Sci. Num., 11, 335 (2010)
[3] Li, Z. B.; He, J. H., Nonlinear Sci. Lett. A, 2, 121 (2011)
[4] He, J. H., Phys. Lett. A, 375, 3362 (2011)
[5] Jafari, H.; Kadkhoda, N.; Tajadodi, H., Int. J. Nonlinear Sci. Num., 11, 271 (2010) · Zbl 1401.34011
[6] Golbabai, A.; Sayevand, K., Nonlinear Sci. Lett. A, 1, 147 (2010)
[7] He, J. H., Comput. Methods Appl. Mech. Engrg., 167, 57 (1998) · Zbl 0942.76077
[8] He, J. H., Thermal Sci., 15, S1 (2011)
[9] He, J. H., Thermal Sci., 15, S145 (2011)
[10] He, J. H.; Wu, G. C.; Austin, F., Nonlinear Sci. Lett. A, 1, 1 (2010)
[11] Guo, S.; Mei, L., Phys. Lett. A, 375, 309 (2011) · Zbl 1241.35216
[12] Wu, G.; Lee, E. W.M., Phys. Lett. A, 374, 2506 (2010) · Zbl 1237.34007
[13] Zhang, S.; Zong, Q.-A.; Liu, D.; Gao, Q., Commun. Fract. Calc., 1, 48 (2010)
[14] Hristov, J., Int. Rev. Chem. Eng., 2, 555 (2010)
[15] Hristov, J., Thermal Sci., 15, S5 (2011)
[16] Hristov, J., Thermal Sci., 14, 291 (2010)
[17] Yang, X., Prog. Nonlinear Sci., 4, 1 (2011)
[18] Gupta, P. K., Nonlinear Sci. Lett. B, 1, 123 (2011)
[19] Das, S.; Gupta, P. K.; Barat, S., Nonlinear Sci. Lett. B, 1, 129 (2011)
[20] Jafari, H., Commun. Fract. Calc., 2, 9 (2011)
[21] Ganji, D. D.; Kachapi, S. H.H., Prog. Nonlinear Sci., 2, 1 (2011)
[22] Ganji, D. D.; Kachapi, S. H.H., Prog. Nonlinear Sci., 3, 1 (2011)
[23] Jumarie, G., Appl. Math. Lett., 23, 1444 (2010) · Zbl 1202.30068
[24] Jumarie, G., Int. J. Systems Sci., 6, 1113 (1993)
[25] Jumarie, G., J. Appl. Math. Comput., 24, 31 (2007) · Zbl 1145.26302
[26] Jumarie, G., Appl. Math. Lett., 22, 1659 (2009) · Zbl 1181.44001
[27] He, J. H., Chaos Solitons Fractals, 36, 542 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.