zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impulsive fractional differential equations with nonlinear boundary conditions. (English) Zbl 1255.34006
Summary: We study certain impulsive functional fractional differential equations with nonlinear boundary conditions. By means of monotone iterative method coupled with lower and upper solutions, some new sufficient conditions for the existence of solutions are established.

MSC:
34A08Fractional differential equations
34B37Boundary value problems for ODE with impulses
45J05Integro-ordinary differential equations
WorldCat.org
Full Text: DOI
References:
[1] Ei-Sayed, A. M. A.: On the fractional differential equations. Appl. math. Comput. 49, 205-213 (1992) · Zbl 0757.34005
[2] Ei-Sayed, A. M. A.: Nonlinear functional differential equations of arbitrary order. Nonlinear anal. TMA 33, 181-186 (1998) · Zbl 0934.34055
[3] Ravi P. Agarwal, Mouffak Benchohra, Samira Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. doi:10.1007/s10440-008-9356-6. · Zbl 1198.26004
[4] Ibrahim, R. W.; Momani, S.: On the existence and uniqueness of solutions of a class of fractional differential equations. J. math. Anal. appl. 334, 1-10 (2007) · Zbl 1123.34302
[5] Lakshmikantham, V.; Vatsala, A. S.: Basic theory of fractional differential equations. Nonlinear anal. TMA 69, 2677-2682 (2008) · Zbl 1161.34001
[6] Tian, Y.; Bai, Z.: Existence results for the three-point impulsive boundary value problem involving fractional differential equations. Comput. math. Appl. 59, 2601-2609 (2010) · Zbl 1193.34007
[7] Podlubny, I.: Fractional differential equations. Math. sci. Eng. 198 (1999) · Zbl 0924.34008
[8] Zhang, S.: Positive solutions for boundary value problem of nonlinear fractional differential equations. Electron. J. Differential equations 26, 1-12 (2006) · Zbl 1096.34016
[9] Lakshmikanthama, V.; Vatsala, A. S.: Basic theory of fractional differential equations. Nonlinear anal. 69, 2677-2682 (2008) · Zbl 1161.34001
[10] Lakshmikantham, V.; Leela, S.: Nagumo-type uniqueness result for fractional differential equations. Nonlinear anal. 71, 2886-2889 (2009) · Zbl 1177.34003
[11] Lakshmikanthama, V.; Vatsala, A. S.: General uniqueness and monotone iterative technique for fractional differential equations. Appl. math. Lett. 21, 828-834 (2008) · Zbl 1161.34031
[12] Lakshmikanthama, V.; Vatsala, A. S.: Theory of fractional differential inequalities and applications. Commun. appl. Anal. 11, 395-402 (2007) · Zbl 1159.34006
[13] Mcrae, F. A.: Monotone iterative technique and existence results for fractional differential equations. Nonlinear anal. 71, 6093-6096 (2009) · Zbl 1260.34014
[14] Devi, J. Vasundhara; Suseela, C. H.: Quasilinearization for fractional differential equations. Commun. appl. Anal. 12, No. 4, 407-418 (2008) · Zbl 1184.34015
[15] Devi, J. Vasundhara: Generalized monotone method for periodic boundary value problems of Caputo fractional differential equations. Commun. appl. Anal. 12, No. 4, 399-406 (2008) · Zbl 1184.34014
[16] Ahmad, Bashir; Sivasundaram, S.: Some basic results for fractional functional integro-differential equations. Commun. appl. Anal. 12, No. 4, 467-478 (2008) · Zbl 1180.45004
[17] Liu, Xiping; Jia, Mei: Multiple solutions for fractional differential equations with nonlinear boundary conditions. Comput. math. Appl. 59, 2880-2886 (2010) · Zbl 1193.34037
[18] Franco, Daniel; Nieto, Juan J.; O’regan, Donal: Existence of solutions for first order ordinary differential equations with nonlinear boundary conditions. Appl. math. Comput. 153, 793-802 (2004) · Zbl 1058.34015
[19] Franco, Daniel; Nieto, Juan J.: First-order impulsive ordinary differential equations with anti-periodic and nonlinear boundary conditions. Nonlinear anal. 42, 163-173 (2000) · Zbl 0966.34025
[20] El-Gebeily, Mohamed; O’regan, Donal: A generalized quasilinearization method for second-order nonlinear differential equations with nonlinear boundary conditions. J. comput. Appl. math. 192, 270-281 (2006) · Zbl 1095.65066
[21] Lakshmikantham, V.: Theory of fractional functional differential equations. Nonlinear anal. 69, 3337-3343 (2008) · Zbl 1162.34344
[22] Agarwal, R. P.; Zhou, Yong; He, Yunyun: Existence of fractional neutral functional differential equations. Comput. math. Appl. 59, 1095-1100 (2010) · Zbl 1189.34152
[23] Belmekki, Mohammed; Benchohra, Mouffak: Existence results for fractional order semilinear functional differential equations with nondense domain. Nonlinear anal. 72, 925-932 (2010) · Zbl 1179.26018
[24] Kilbas, A. A.; Srivastava, Hari M.; Trujillo, Juan J.: Theory and applications of fractional differential equations. North-holland mathematics studies 204 (2006) · Zbl 1092.45003