zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the solutions of systems of rational difference equations. (English) Zbl 1255.39011
Summary: We deal with the periodic nature and the form of the solutions of the following systems of rational difference equations $$ x_{n+1}=\frac{x_{n-3}}{\pm1\pm x_{n-3}y_{n-1}},\quad y_{n+1}=\frac{y_{n-3}}{\pm1\pm y_{n-3}x_{n-1}} $$ with a nonzero real number’s initial conditions.

MSC:
39A23Periodic solutions (difference equations)
WorldCat.org
Full Text: DOI
References:
[1] Agarwal, R. P.: Difference equations and inequalities. (1992) · Zbl 0925.39001
[2] Agarwal, R. P.; Elsayed, E. M.: Periodicity and stability of solutions of higher order rational difference equation. Advanced studies in contemporary mathematics 17, No. 2, 181-201 (2008) · Zbl 1169.39001
[3] Agarwal, R. P.; Elsayed, E. M.: On the solution of fourth-order rational recursive sequence. Advanced studies in contemporary mathematics 20, No. 4, 525-545 (2010) · Zbl 1248.39006
[4] Battaloglu, N.; Cinar, C.; Yalçınkaya, I.: The dynamics of the difference equation. ARS combinatoria 97, 281-288 (2010) · Zbl 1249.39010
[5] Cinar, C.: On the positive solutions of the difference equation system xn+1=1/yn,yn+1=yn/xn-1yn-1. Applied mathematics and computation 158, 303-305 (2004)
[6] C. Cinar, T. Mansour, I. Yalçınkaya, On the difference equation of higher order, ARS Combinatoria (in press).
[7] Cinar, C.; Yalçinkaya, I.; Karatas, R.: On the positive solutions of the difference equation system xn+1=m/yn,yn+1=pyn/xn-1yn-1. Journal of institute of mathematics and computer sciences 18, No. 2, 135-136 (2005)
[8] Elabbasy, E. M.; El-Metwally, H.; Elsayed, E. M.: On the solutions of a class of difference equations systems. Demonstratio Mathematica 41, No. 1, 109-122 (2008) · Zbl 1154.39004
[9] Elabbasy, E. M.; El-Metwally, H.; Elsayed, E. M.: Global behavior of the solutions of difference equation. Advances in difference equations (2011) · Zbl 1271.39008
[10] Elabbasy, E. M.; Elsayed, E. M.: Global attractivity and periodic nature of a difference equation. World applied sciences journal 12, No. 1, 39-47 (2011)
[11] Elsayed, E. M.: On the solutions of higher order rational system of recursive sequences. Mathematica balkanica 21, No. 3--4, 287-296 (2008) · Zbl 1172.39008
[12] Elsayed, E. M.: On the solutions of a rational system of difference equations. Fasciculi mathematici 45, 25-36 (2010) · Zbl 1260.39012
[13] Elsayed, E. M.: A solution form of a class of rational difference equations. International journal of nonlinear science 8, No. 4, 402-411 (2009)
[14] Elsayed, E. M.: Qualitative behavior of difference equation of order three. Acta scientiarum mathematicarum (Szeged) 75, No. 1--2, 113-129 (2010) · Zbl 1212.39010
[15] Elsayed, E. M.: Behavior of a rational recursive sequences, studia univ. ”Babes--bolyai”. Mathematica, LVI 1, 27-42 (2011) · Zbl 1240.39021
[16] Elsayed, E. M.: On the global attractivity and the solution of recursive sequence. Studia scientiarum mathematicarum hungarica 47, No. 3, 401-418 (2010) · Zbl 1240.39022
[17] Elsayed, E. M.: Solution of a recursive sequence of order ten. General mathematics 19, No. 1, 145-162 (2011) · Zbl 1224.39013
[18] Elsayed, E. M.: Dynamics of recursive sequence of order two. Kyungpook mathematical journal 50, 483-497 (2010) · Zbl 1298.39004
[19] Elsayed, E. M.: Qualitative behavior of difference equation of order two. Mathematical and computer modelling 50, 1130-1141 (2009) · Zbl 1185.39012
[20] Elsayed, E. M.: On the dynamics of a higher order rational recursive sequence. Communications in mathematical analysis 12, No. 1, 117-133 (2012) · Zbl 1235.39001
[21] Elsayed, E. M.: On the solution of some difference equations. European journal of pure and applied mathematics 4, No. 3, 287-303 (2011)
[22] Zayed, E. M. E.; El-Moneam, M. A.: On the rational recursive sequence xn+1=axn-bxncxn-dxn-k. Communications on applied nonlinear analysis 15, No. 2, 47-57 (2008) · Zbl 1149.39011
[23] Özban, A. Y.: On the positive solutions of the system of rational difference equations, xn+1=1/yn-k,yn+1=yn/xn-myn-m-k. Journal of mathematical analysis and applications 323, 26-32 (2006)
[24] Özban, A. Y.: On the system of rational difference equations xn+1=a/yn-3,yn+1=byn-3/xn-qyn-q. Applied mathematics and computation 188, No. 1, 833-837 (2007) · Zbl 1123.39006
[25] Yalçınkaya, I.: On the global asymptotic stability of a second-order system of difference equations. Discrete dynamics in nature and society, 12 (2008)
[26] Yalçınkaya, I.: On the global asymptotic behavior of a system of two nonlinear difference equations. ARS combinatoria 95, 151-159 (2010)
[27] Yang, X.; Liu, Y.; Bai, S.: On the system of high order rational difference equations xn=a/yn-p,yn=byn-p/xn-qyn-q. Applied mathematics and computation 171, No. 2, 853-856 (2005)
[28] E.M. Elsayed, Solution of rational difference system of order two, Mathematical and Computers Modelling, in press (doi:10.1016/j.mcm.2011.08.012). · Zbl 1255.39003
[29] Erdoğan, M. E.; Cinar, C.; Yalçınkaya, I.: On the dynamics of the recursive sequence. Computers & mathematics with applications 61, 533-537 (2011)
[30] Kurbanlı, A. S.; Cinar, C.; Yalçınkaya, I.: On the behavior of positive solutions of the system of rational difference equations. Mathematical and computer modelling 53, 1261-1267 (2011) · Zbl 1217.39024
[31] Yalçınkaya, I.: On the difference equation $xn+1={\alpha}+$xn-mxnk. Discrete dynamics in nature and society, 8 (2008)
[32] Yalçınkaya, I.; Cinar, C.; Atalay, M.: On the solutions of systems of difference equations. Advances in difference equations, 9 (2008)
[33] Yalçınkaya, I.; Cinar, C.; Simsek, D.: Global asymptotic stability of a system of difference equations. Applicable analysis 87, No. 6, 689-699 (2008)
[34] Yang, X.: On the system of rational difference equations xn=A+yn-1/xn-pyn-q,yn=A+xn-1/xn-ryn-s. Journal of mathematical analysis and applications 307, 305-311 (2005)