zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An algorithm for the numerical solution of nonlinear fractional-order van der Pol oscillator equation. (English) Zbl 1255.65142
Summary: This paper is devoted to the numerical simulation for solving a special class of fractional differential equations. Based on the Grünwald-Letnikov definition of a fractional derivative, a numerical scheme for the approximation of the solution is discussed. By using this scheme, we solve the fractional Van der Pol equation. The results obtained here compare well with the analytical solutions and this shows that the numerical scheme is stable.

65L12Finite difference methods for ODE (numerical methods)
34A08Fractional differential equations
34C15Nonlinear oscillations, coupled oscillators (ODE)
65R20Integral equations (numerical methods)
45J05Integro-ordinary differential equations
Full Text: DOI
[1] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential. (2006) · Zbl 1092.45003
[2] Podlubny, I.: Fractional differential equations. (1999) · Zbl 0924.34008
[3] Stanislavsky, A. A.: Fractional oscillator. Phys. rev. E 70, 051103 (2004) · Zbl 1178.26008
[4] Trujillo, J. J.: On a Riemann--Liouville generalized Taylor’s formula. J. math. Anal. appl. 231, 255-265 (1999) · Zbl 0931.26004
[5] Oldham, K. B.; Spanier, J.: The fractional calculus. Mathematics in science and engineering 111 (1974) · Zbl 0292.26011
[6] Daftardar-Gejji, V.; Jafari, H.: Solving a multi-order fractinal differential equation using Adomian decomposition. Appl. math. Comput. 189, 541-548 (2007) · Zbl 1122.65411
[7] Jafari, H.; Seifi, S.: Solving a system of nonlinear fractional partial differential equations using homotopy analysis method. Commun. nonlinear sci. Numer. simul. 14, No. 5, 1962-1969 (2009) · Zbl 1221.35439
[8] Jafari, H.; Khalique, C. M.; Nazari, M.: Application of Laplace decomposition method for solving linear and nonlinear fractional diffusion-wave equations. Appl. math. Lett. 24, No. 11, 1799-1805 (2011) · Zbl 1231.65179
[9] Jafari, H.; Yousefi, S. A.; Firoozjaee, M. A.; Momani, S.; Khalique, C. M.: Application of Legendre wavelets for solving fractional differential equations. Comput. math. Appl. 62, No. 3, 1038-1045 (2011) · Zbl 1228.65253
[10] Khan, M.; Anjum, A.; Fetecau, C.; Qi, H.: Exact solutions for some oscillating motions of a fractional Burgers fluid. Math. comput. Modelling 51, No. 5--6, 682-692 (2010) · Zbl 1190.35225
[11] Momani, S.; Odibat, Z.: Numerical approach to differential equations of fractional order. J. comput. Appl. math. 207, No. 1, 96-110 (2007) · Zbl 1119.65127
[12] Singh, J.; Gupta, P. K.; Rai, K. N.: Solution of fractional bioheat equations by finite difference method and HPM. Math. comput. Modelling 54, No. 9--10, 2316-2325 (2011) · Zbl 1235.65113
[13] Wu, G.: Adomian decomposition method for non-smooth initial value problems. Math. comput. Modelling 54, No. 9--10, 2104-2108 (2011) · Zbl 1235.65105
[14] Cai, X.; Liu, F.: Numerical simulation of the fractional-order control system. J. appl. Math. comput. 23, No. 1--2, 229-241 (2007) · Zbl 1130.93029
[15] Liu, Q.; Liu, F.: Numerical simulation flow with fractinal for the 3D seepage derivatives in porpous media. IMA J. Appl. math. 74, 201-229 (2009) · Zbl 1169.76427
[16] Scherer, R.; Kalla, S. L.: Numerical treatment of fractional heat equation. Appl. numer. Math. 58, 1212-1223 (2008) · Zbl 1143.65105
[17] Caponetto, R.; Dongola, G.; Fortuna, L.; Petras, I.: Fractional order systems: modeling and control applications. (2010) · Zbl 1207.82058
[18] Atay, F. M.: Van der Pol’s oscillator under delayed feedback. J. sound vib. 218, No. 2, 333-339 (1998) · Zbl 1235.70142
[19] Barari, A.; Omidvar, M.; Ganji, D. D.: Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations. Acta appl. Math. 104, 161-171 (2008) · Zbl 1197.34015
[20] Barbosa, R. S.; Machado, J. A. T.; Vingare, B. M.; Calderon, A. J.: Analysis of the van der Pol oscillator containing derivatives of fractional order. J. vib. Control 13, No. 9--10, 1291-1301 (2007) · Zbl 1158.70009