[1] |
D. Bainov and S. Hristova, Differential Equations with Maxima, CRC Press, Taylor & Francis, Boca Raton, Fla, USA, 2011. · Zbl 1244.34001 |

[2] |
R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods and Applications, CRC Press, New York, NY, USA, 2000. · Zbl 0952.39001 |

[3] |
F. M. Atici, A. Cabada, and J. B. Ferreiro, “First order difference equations with maxima and nonlinear functional boundary value conditions,” Journal of Difference Equations and Applications, vol. 12, no. 6, pp. 565-576, 2006. · Zbl 1107.39001
· doi:10.1080/10236190600637924 |

[4] |
E. Braverman, “On oscillation of differential and difference equations with non-monotone delays,” Applied Mathematics and Computation, vol. 218, no. 7, pp. 3880-3887, 2011. · Zbl 1256.39013
· doi:10.1016/j.amc.2011.09.035 |

[5] |
A. Cabada, “The method of lower and upper solutions for periodic and anti-periodic difference equations,” Electronic Transactions on Numerical Analysis, vol. 27, pp. 13-25, 2007. · Zbl 1171.39301
· emis:journals/ETNA/vol.27.2007/pp13-25.dir/pp13-25.html
· eudml:130600 |

[6] |
J. Diblík, “On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence,” Applied Mathematics and Computation, vol. 218, no. 18, pp. 9310-9320, 2012. · Zbl 1250.39002 |

[7] |
J. Diblík, “Asymptotic convergence of the solutions of a discrete equation with several delays,” Applied Mathematics and Computation, vol. 218, no. 9, pp. 5391-5401, 2012. · Zbl 1302.39011
· doi:10.1016/j.amc.2011.11.023 |

[8] |
J. Diblík, “Asymptotic convergence of the solutions of a discrete equation with two delays in the critical case,” Abstract and Applied Analysis, vol. 2011, Article ID 709427, 15 pages, 2011. · Zbl 1220.39004
· doi:10.1155/2011/709427 |

[9] |
S. Elaydi, Introduction to Difference Equations and Inequalities: Theory, Methods and Applications, CRC Press, New York, NY, USA, 2000. · Zbl 0966.39001 |

[10] |
A. Geli\csken, C. \cCinar, and A. S. Kurbanli, “On the asymptotic behavior and periodic nature of a difference equation with maximum,” Computers and Mathematics with Applications, vol. 59, no. 2, pp. 898-902, 2010. · Zbl 1189.39020
· doi:10.1016/j.camwa.2009.10.004 |

[11] |
T. Jankowski, “First-order functional difference equations with nonlinear boundary value problems,” Computers and Mathematics with Applications, vol. 59, no. 6, pp. 1937-1943, 2010. · Zbl 1189.39003
· doi:10.1016/j.camwa.2009.11.008 |

[12] |
S. Stević, “Global stability of a max-type difference equation,” Applied Mathematics and Computation, vol. 216, no. 1, pp. 354-356, 2010. · Zbl 1193.39009
· doi:10.1016/j.amc.2010.01.020 |

[13] |
S. Stević, “Global stability of a difference equation with maximum,” Applied Mathematics and Computation, vol. 210, no. 2, pp. 525-529, 2009. · Zbl 1167.39007
· doi:10.1016/j.amc.2009.01.050 |

[14] |
S. Tersian, “Homoclinic solutions of difference equations with variable exponents,” Topological Methods in Nonlinear Analysis, vol. 38, no. 2, pp. 277-289, 2011. · Zbl 1270.39005 |

[15] |
S. Tersian, “Multiple solutions for discrete boundary value problems,” Journal of Mathematical Analysis and Applications, vol. 356, no. 2, pp. 418-428, 2009. · Zbl 1169.39008
· doi:10.1016/j.jmaa.2009.02.038 |

[16] |
N. Touafek and Y. Halim, “On max type difference equations: expressions of solutions,” International Journal of Nonlinear Sciences, vol. 11, no. 4, pp. 396-402, 2011. |

[17] |
P. Wang and W. Wang, “Boundary value problems for first order impulsive difference equations,” International Journal of Difference Equations, vol. 1, no. 2, pp. 249-259, 2006. · Zbl 1142.39314 |

[18] |
X. Yang, X. Liao, and C. Li, “On a difference equation wtih maximum,” Applied Mathematics and Computation, vol. 181, no. 1, pp. 1-5, 2006. · Zbl 1148.39303
· doi:10.1016/j.amc.2006.01.005 |