zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive fractional-order multi-scale method for image denoising. (English) Zbl 1255.68278
Summary: The total variation model proposed by Rudin, Osher, and Fatemi performs very well for removing noise while preserving edges. However, it favors a piecewise constant solution in BV space which often leads to the staircase effect, and small details such as textures are often filtered out with noise in the process of denoising. In this paper, we propose a fractional-order multi-scale variational model which can better preserve the textural information and eliminate the staircase effect. This is accomplished by replacing the first-order derivative with the fractional-order derivative in the regularization term, and substituting a kind of multi-scale norm in negative Sobolev space for the $L^2$ norm in the fidelity term of the ROF model. To improve the results, we propose an adaptive parameter selection method for the proposed model by using the local variance measures and the wavelet based estimation of the singularity. Using the operator splitting technique, we develop a simple alternating projection algorithm to solve the new model. Numerical results show that our method can not only remove noise and eliminate the staircase effect efficiently in the non-textured region, but also preserve the small details such as textures well in the textured region. It is for this reason that our adaptive method can improve the result both visually and in terms of the peak signal to noise ratio efficiently.

68U10Image processing (computing aspects)
94A08Image processing (compression, reconstruction, etc.)
Full Text: DOI
[1] Ruding, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1--4), 259--268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[2] Chan, T.F., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503--516 (2000) · Zbl 0968.68175 · doi:10.1137/S1064827598344169
[3] Chan, T.F., Esedoglu, S., Park, F.E.: A fourth order dual method for staircase reduction in texture extraction and image restoration problems. UCLA CAM Report, 05-28 (2005)
[4] You, Y.L., Kaveh, M.: Fourth-order partial differential equations for noise removal. IEEE Trans. Image Process. 9(10), 1723--1730 (2000) · Zbl 0962.94011 · doi:10.1109/83.869184
[5] Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579--1590 (2003) · Zbl 1286.94020 · doi:10.1109/TIP.2003.819229
[6] Bai, J., Feng, X.C.: Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 16(10), 2492--2502 (2007) · Zbl 05453693 · doi:10.1109/TIP.2007.904971
[7] Zhang, J., Wei, Z.H.: Fractional variational model and algorithm for image denoising. In: Fourth International Conference on Natural Computation (ICNC2008), vol. 5, pp. 524--528. IEEE Press, New York (2008)
[8] Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures. Am. Math. Soc., Boston (2001) · Zbl 0987.35003
[9] Lieu, L., Vese, L.: Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev space. UCLA CAM Report, 05-33 (2005)
[10] Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vis. 63(1), 85--104 (2005) · Zbl 02244103 · doi:10.1007/s11263-005-4948-3
[11] Zhang, J., Wei, Z.H.: A class of multi-scale models for image denoising in negative Hilbert-Sobolev spaces. In: International Conference on Emerging Intelligent Computing and Applications. Lecture Notes in Control and Information Science, vol. 345, pp. 584--592. Springer, Berlin (2006) · Zbl 1202.94096
[12] Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) · Zbl 0924.34008
[13] Aujol, J.F., Gilboa, G., Chan, T.F., Osher, S.: Structure-texture image decomposition: modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67(1), 111--136 (2006) · Zbl 1287.94011 · doi:10.1007/s11263-006-4331-z
[14] Gilboa, G., Sochen, N., Zeevi, Y.: Variational denoising of partly-textured images by spatially varying constraints. IEEE Trans. Image Process. 15(8), 2281--2289 (2006) · Zbl 05453601 · doi:10.1109/TIP.2006.875247
[15] Gilles, J.: Noisy image decomposition: a new structure, texture and noise model based on local adaptively. J. Math. Imaging Vis. 28(3), 285--295 (2007) · Zbl 05537213 · doi:10.1007/s10851-007-0020-y
[16] Li, F., Ng, M.K., Shen, C.: Multiplicative noise removal with spatially varying regularization parameters. SIAM J. Imaging Sci. 3(1), 1--20 (2010) · Zbl 1185.65067 · doi:10.1137/090748421
[17] Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89--97 (2004) · Zbl 02060336 · doi:10.1023/B:JMIV.0000011321.19549.88
[18] Chen, G.H.G., Rockafellar, R.T.: Convergence rates in forward-backward splitting [J]. SIAM J. Optim. 7(2), 421--444 (1997) · Zbl 0876.49009 · doi:10.1137/S1052623495290179
[19] Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168--1200 (2005) · Zbl 1179.94031 · doi:10.1137/050626090