zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer. (English) Zbl 1255.80026
Summary: The homotopy perturbation method (HPM), which does not need small parameters in the equations, is compared with the perturbation and numerical methods in the heat transfer field. The perturbation method depends on small parameter assumption, and the obtained results, in most cases, end up with a non-physical result, the numerical method leads to inaccurate results when the equation is intensively dependent on time, while He’s homotopy perturbation method (HPM) overcomes completely the above shortcomings, revealing that the HPM is very convenient and effective. Comparing different methods shows that, when the effect of the nonlinear term is negligible, homotopy perturbation method and the common perturbation method have got nearly the same answers but when the nonlinear term in the heat equation is more effective, there will be a considerable difference between the results. As the homotopy perturbation method does not need a small parameter, the answer will be nearer to the exact solution and also to the numerical one.

80M25Other numerical methods (thermodynamics)
80A20Heat and mass transfer, heat flow
Full Text: DOI
[1] Bellman, R.: Perturbation techniques in mathematics, physics and engineering. (1964) · Zbl 0124.05001
[2] Cole, J. D.: Perturbation methods in applied mathematics. (1968) · Zbl 0162.12602
[3] L. Cveticanin, Homotopy-perturbation method for pure nonlinear differential equation, Chaos Solitons Fractals, 2005, in press · Zbl 1238.65085
[4] El-Shahed, M.: Int. J. Nonlinear sci. Numer. simul.. 6, No. 2, 163 (2005)
[5] Ganji, D. D.; Rajabi, A.: Int. commun. Heat mass transfer. 33, No. 3, 391 (2006)
[6] He, J. H.: J. comput. Methods appl. Mech. eng.. 167, No. 1 -- 2, 57 (1998)
[7] He, J. H.: J. comput. Methods appl. Mech. eng.. 167, No. 1 -- 2, 69 (1998)
[8] He, J. H.: Int. J. Non-linear mech.. 34, No. 4, 699 (1999)
[9] He, J. H.: J. comput. Methods appl. Mech. eng.. 178, No. 3 -- 4, 257 (1999)
[10] He, J. H.: Int. J. Non-linear mech.. 35, No. 1, 37 (2000)
[11] He, J. H.: J. appl. Math. comput.. 114, No. 2 -- 3, 115 (2000)
[12] He, J. H.: J. appl. Math. comput.. 135, No. 1, 73 (2000)
[13] He, J. H.; Wan, Y. Q.; Guo, Q.: Int. J. Circuit theory appl.. 32, No. 6, 629 (2004)
[14] He, J. H.: J. appl. Math. comput.. 151, No. 1, 287 (2004)
[15] He, J. H.: J. appl. Math. comput.. 156, No. 3, 591 (2004)
[16] He, J. H.: Int. J. Nonlinear sci. Numer. simul.. 6, No. 2, 207 (2005)
[17] He, J. H.: Chaos solitons fractals. 26, No. 3, 695 (2005)
[18] He, J. H.: Chaos solitons fractals. 26, No. 3, 827 (2005)
[19] He, J. H.: Phys. lett. A. 347, No. 4 -- 6, 228 (2005)
[20] He, J. H.; Wu, X. H.: Chaos solitons fractals. 29, No. 1, 108 (2006)
[21] He, J. H.: Phys. lett. A. 350, No. 1 -- 2, 87 (2006)
[22] G.L. Liu, New research directions in singular perturbation theory: artificial parameter approach and inverse-perturbation technique, in: Conference of 7th Modern Mathematics and Mechanics, Shanghai, 1997
[23] Nayfeh, A. H.: Perturbation methods. (1973) · Zbl 0265.35002
[24] Jr., R. E. O’malley: Introduction to singular perturbation. (1974)
[25] Van Dyke, M.: Perturbation methods in fluid mechanics. (1975) · Zbl 0329.76002
[26] Y’aziz, A.; Hamad, G.: Int. J. Mech. eng. Educ.. 5, 167 (1977)