Li, Junhong; Ding, Feng; Yang, Guowei Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems. (English) Zbl 1255.93147 Math. Comput. Modelling 55, No. 3-4, 442-450 (2012). Summary: According to the maximum likelihood principle, a maximum likelihood least squares identification method is presented for input nonlinear finite impulse response moving average (IN-FIR-MA) systems (e.g., Hammerstein FIR-MA systems). The simulation results indicate that the proposed algorithm is effective. Cited in 48 Documents MSC: 93E12 Identification in stochastic control theory 62F10 Point estimation Keywords:least squares; parameter estimation; recursive identification; maximum likelihood; Hammerstein model; nonlinear system PDF BibTeX XML Cite \textit{J. Li} et al., Math. Comput. Modelling 55, No. 3--4, 442--450 (2012; Zbl 1255.93147) Full Text: DOI OpenURL References: [1] Ding, F.; Chen, T., Hierarchical least squares identification methods for multivariable systems, IEEE transactions on automatic control, 50, 3, 397-402, (2005) · Zbl 1365.93551 [2] Han, L.L.; Sheng, J.; Ding, F.; Shi, Y., Auxiliary model identification method for multirate multi-input systems based on least squares, Mathematical and computer modelling, 50, 7-8, 1100-1106, (2009) · Zbl 1185.93139 [3] Zhang, Y.; Cui, G.M., Bias compensation methods for stochastic systems with colored noise, Applied mathematical modelling, 35, 4, 1709-1716, (2011) · Zbl 1217.93163 [4] Zhang, Y., Unbiased identification of a class of multi-input single-output systems with correlated disturbances using bias compensation methods, Mathematical and computer modelling, 53, 9-10, 1810-1819, (2011) · Zbl 1219.93141 [5] Cao, Y.N.; Liu, Z.Q., Signal frequency and parameter estimation for power systems using the hierarchical identification principle, Mathematical and computer modelling, 52, 5-6, 854-861, (2010) · Zbl 1202.94116 [6] Shi, Y.; Fang, H., Kalman filter based identification for systems with randomly missing measurements in a network environment, International journal of control, 83, 3, 538-551, (2010) · Zbl 1222.93228 [7] Sun, X.F.; Rosin, P.L.; Martin, R.R., Fast rule identification and neighborhood selection for cellular automata, IEEE transactions on systems, man and cybernetics-part B: cybernetics, 41, 3, 749-760, (2011) [8] Liu, Y.J.; Sheng, J.; Ding, R.F., Convergence of stochastic estimation gradient algorithm for multivariable ARX-like systems, Computers & mathematics with applications, 59, 8, 2615-2627, (2010) · Zbl 1193.60057 [9] Rizogiannis, C.; Kofidis, E.; Papadias, C.B.; Theodoridis, S., Semi-blind maximum-likelihood joint channel/data estimation for correlated channels in multiuser MIMO networks, Signal processing, 90, 4, 1209-1224, (2010) · Zbl 1197.94116 [10] Krummenauer, R.; Cazarotto, M.; Lopes, A.; Larzabal, P.; Forster, P., Improving the threshold performance of maximum likelihood estimation of direction of arrival, Signal processing, 90, 5, 1582-1590, (2010) · Zbl 1194.94101 [11] Ljung, L., System identification: theory for the user, (1999), Prentice-Hall Englewood Cliffs, NJ [12] Myung, I.J., Tutorial on maximum likelihood estimation, Journal of mathematical psychology, 47, 1, 90-100, (2003) · Zbl 1023.62112 [13] Ding, F.; Chen, T., Identification of Hammerstein nonlinear ARMAX systems, Automatica, 41, 9, 1479-1489, (2005) · Zbl 1086.93063 [14] Chen, J.; Zhang, Y.; Ding, R.F., Auxiliary model based multi-innovation algorithms for multivariable nonlinear systems, Mathematical and computer modelling, 52, 9-10, 1428-1434, (2010) · Zbl 1205.93142 [15] Wang, D.Q.; Chu, Y.Y.; Ding, F., Auxiliary model-based RELS and MI-ELS algorithms for Hammerstein OEMA systems, Computers & mathematics with applications, 59, 9, 3092-3098, (2010) · Zbl 1193.93170 [16] Wang, D.Q.; Chu, Y.Y.; Yang, G.W.; Ding, F., Auxiliary model-based recursive generalized least squares parameter estimation for Hammerstein OEAR systems, Mathematical and computer modelling, 52, 1-2, 309-317, (2010) · Zbl 1201.93134 [17] Ding, F.; Liu, X.P.; Liu, G., Identification methods for Hammerstein nonlinear systems, Digital signal processing, 21, 2, 215-238, (2011) [18] Ahmadi, M.; Mojallali, H., Identification of multiple-input single-output Hammerstein models using bezier curves and Bernstein polynomials, Applied mathematical modelling, 35, 4, 1969-1982, (2011) · Zbl 1217.93171 [19] Wang, D.Q.; Ding, F., Extended stochastic gradient identification algorithms for hammerstein – wiener ARMAX systems, Computers & mathematics with applications, 56, 12, 3157-3164, (2008) · Zbl 1165.65308 [20] Ding, F.; Shi, Y.; Chen, T., Gradient based identification algorithms for nonlinear Hammerstein ARMAX models, Nonlinear dynamics, 45, 1-2, 31-43, (2006) · Zbl 1134.93321 [21] Ding, F.; Shi, Y.; Chen, T., Auxiliary model-based least-squares identification methods for Hammerstein output-error systems, Systems & control letters, 56, 5, 373-380, (2007) · Zbl 1130.93055 [22] Wang, D.Q.; Ding, F., Least squares based and gradient based iterative identification for Wiener nonlinear systems, Signal processing, 91, 5, 1182-1189, (2011) · Zbl 1219.94052 [23] Dehghan, M.; Hajarian, M., Finite iterative algorithms for the reflexive and anti-reflexive solutions of the matrix equation \(A_1 X_1 B_1 + A_2 X_2 B_2 = C\), Mathematical and computer modelling, 49, 9-10, 1937-1959, (2009) · Zbl 1171.15310 [24] Dehghan, M.; Hajarian, M., An efficient algorithm for solving general coupled matrix equations and its application, Mathematical and computer modelling, 51, 9-10, 1118-1134, (2010) · Zbl 1208.65054 [25] Bao, B.; Xu, Y.Q.; Sheng, J.; Ding, R.F., Least squares based iterative parameter estimation algorithm for multivariable controlled ARMA system modelling with finite measurement data, Mathematical and computer modelling, 53, 9-10, 1664-1669, (2011) · Zbl 1219.62133 [26] Ding, F.; Liu, P.X.; Liu, G., Gradient based and least-squares based iterative identification methods for OE and OEMA systems, Digital signal processing, 20, 3, 664-677, (2010) [27] Ding, F.; Chen, T., Gradient based iterative algorithms for solving a class of matrix equations, IEEE transactions on automatic control, 50, 8, 1216-1221, (2005) · Zbl 1365.65083 [28] Ding, F.; Chen, T., Iterative least squares solutions of coupled Sylvester matrix equations, Systems & control letters, 54, 2, 95-107, (2005) · Zbl 1129.65306 [29] Ding, F.; Chen, T., On iterative solutions of general coupled matrix equations, SIAM journal on control and optimization, 44, 6, 2269-2284, (2006) · Zbl 1115.65035 [30] Ding, F.; Liu, P.X.; Ding, J., Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Applied mathematics and computation, 197, 1, 41-50, (2008) · Zbl 1143.65035 [31] Xie, L.; Ding, J.; Ding, F., Gradient based iterative solutions for general linear matrix equations, Computers & mathematics with applications, 58, 7, 1441-1448, (2009) · Zbl 1189.65083 [32] Ding, F., Transformations between some special matrices, Computers & mathematics with applications, 59, 8, 2676-2695, (2010) · Zbl 1193.15028 [33] Ding, J.; Liu, Y.J.; Ding, F., Iterative solutions to matrix equations of form aixbi=fi, Computers & mathematics with applications, 59, 11, 3500-3507, (2010) · Zbl 1197.15009 [34] Xie, L.; Liu, Y.J.; Yang, H.Z., Gradient based and least squares based iterative algorithms for matrix equations AXB+CX^{T}D=F, Applied mathematics and computation, 217, 5, 2191-2199, (2010) · Zbl 1210.65097 [35] Wang, W.; Li, J.H.; Ding, R.F., Maximum likelihood identification algorithm for controlled autoregressive autoregressive models, International journal of computer mathematics, (2011) · Zbl 1248.93161 [36] Wang, W.; Ding, F.; Dai, J.Y., Maximum likelihood least squares identification for systems with autoregressive moving average noise, Applied mathematical modelling, 36, x, (2012) · Zbl 1242.62105 [37] Ding, F.; Chen, T., Performance analysis of multi-innovation gradient type identification methods, Automatica, 43, 1, 1-14, (2007) · Zbl 1140.93488 [38] Liu, Y.J.; Xiao, Y.S.; Zhao, X.L., Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model, Applied mathematics and computation, 215, 4, 1477-1483, (2009) · Zbl 1177.65095 [39] Han, L.L.; Ding, F., Multi-innovation stochastic gradient algorithms for multi-input multi-output systems, Digital signal processing, 19, 4, 545-554, (2009) [40] Ding, F.; Liu, P.X.; Liu, G., Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises, Signal processing, 89, 10, 1883-1890, (2009) · Zbl 1178.94137 [41] Zhang, J.B.; Ding, F.; Shi, Y., Self-tuning control based on multi-innovation stochastic gradient parameter estimation, Systems & control letters, 58, 1, 69-75, (2009) · Zbl 1154.93040 [42] Ding, F.; Liu, P.X; Liu, G., Multi-innovation least squares identification for system modeling, IEEE transactions on systems, man, and cybernetics, part B: cybernetics, 40, 3, 767-778, (2010) [43] Ding, F., Several multi-innovation identification methods, Digital signal processing, 20, 4, 1027-1039, (2010) [44] Wang, D.Q.; Ding, F., Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems, Digital signal processing, 20, 3, 750-762, (2010) [45] Ding, F.; Chen, T., Identification of dual-rate systems based on finite impulse response models, International journal of adaptive control and signal processing, 18, 7, 589-598, (2004) · Zbl 1055.93018 [46] Ding, F.; Chen, T., Least squares based self-tuning control of dual-rate systems, International journal of adaptive control and signal processing, 18, 8, 697-714, (2004) · Zbl 1055.93044 [47] Ding, F.; Chen, T., Combined parameter and output estimating of dual-rate systems using an auxiliary model, Automatica, 40, 10, 1739-1748, (2004) · Zbl 1162.93376 [48] Ding, F.; Chen, T., Parameter estimation of dual-rate stochastic systems by using an output error method, IEEE transactions on automatic control, 50, 9, 1436-1441, (2005) · Zbl 1365.93480 [49] Ding, F.; Chen, T., Hierarchical identification of lifted state-space models for general dual-rate systems, IEEE transactions on circuits and systems—I: regular papers, 52, 6, 1179-1187, (2005) · Zbl 1374.93342 [50] Ding, F.; Chen, T., A gradient based adaptive control algorithm for dual-rate systems, Asian journal of control, 8, 4, 314-323, (2006) [51] Ding, F.; Chen, T.; Iwai, Z., Adaptive digital control of Hammerstein nonlinear systems with limited output sampling, SIAM journal on control and optimization, 45, 6, 2257-2276, (2007) · Zbl 1126.93034 [52] Ding, F.; Qiu, L.; Chen, T., Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems, Automatica, 45, 2, 324-332, (2009) · Zbl 1158.93365 [53] Liu, Y.J.; Xie, L.; Ding, F., An auxiliary model based recursive least squares parameter estimation algorithm for non-uniformly sampled multirate systems, Proceedings of the institution of mechanical engineers, part I: journal of systems and control engineering, 223, 4, 445-454, (2009) [54] Ding, F.; Liu, G.; Liu, X.P., Partially coupled stochastic gradient identification methods for non-uniformly sampled systems, IEEE transaction on automatic control, 55, 8, 1976-1981, (2010) · Zbl 1368.93121 [55] Ding, F.; Ding, J., Least squares parameter estimation with irregularly missing data, International journal of adaptive control and signal processing, 24, 7, 540-553, (2010) · Zbl 1200.93130 [56] Ding, F.; Liu, G.; Liu, X.P., Parameter estimation with scarce measurements, Automatica, 47, 8, 1646-1655, (2011) · Zbl 1232.62043 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.