×

Groups whose finitely generated subgroups are either permutable or pronormal. (English) Zbl 1256.20038

In the theory of groups it is well-known that some families of subgroups can influence the structure of the whole group. For example, the structure of finite groups all whose subgroups are normal was completely described by R. Dedekind, and now such groups are known as Dedekind groups. Among different generalizations of normality there are more natural notions of pronormality and permutability. In the article under review, the authors study locally finite groups whose finitely generated subgroups are either permutable or pronormal and the structure of such groups is described in the main Theorem A of the article.

MSC:

20F50 Periodic groups; locally finite groups
20E07 Subgroup theorems; subgroup growth
20F19 Generalizations of solvable and nilpotent groups
20E15 Chains and lattices of subgroups, subnormal subgroups
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ballester - Bolinches A., Revista Mat. Iberoamericana 24 pp 745–
[2] Chernikov S. N., Math. Sbornik 37 pp 557–
[3] DOI: 10.1007/BF01447922 · JFM 28.0129.03
[4] DOI: 10.1142/2386
[5] Dixon M. R., Algebra and Discrete Mathematics 4 pp 29–
[6] DOI: 10.1016/0021-8693(75)90103-9 · Zbl 0314.20019
[7] De Falco M., Atti Sem. Mat. Fis. Univ. Modena 47 pp 435–
[8] DOI: 10.1016/0021-8693(74)90019-2 · Zbl 0274.20022
[9] Fuchs L., Infinite Abelian Groups 1 (1970) · Zbl 0209.05503
[10] Gruenberg K. W., Illinois J. Math. 3 pp 151–
[11] DOI: 10.1007/BF01650542 · Zbl 0102.26803
[12] DOI: 10.1016/j.jpaa.2004.08.005 · Zbl 1078.20026
[13] Kurdachenko L. A., Fundamental and Applied Mathematics 14 pp 121–
[14] Kuzennyi N. F., Ukrain. Mat. J. 40 pp 322–
[15] Kuzennyi N. F., Ukrain Math. J. 39 pp 325–
[16] Legovini P., Rendiconti el Seminario Matematico della Universita di Padova 58 pp 129–
[17] Legovini P., Rendiconti del Seminario Matematico della Universita di Padova 65 pp 47–
[18] Miller G. A., Trans. Amer. Math. Soc. 4 pp 389–
[19] DOI: 10.1090/S0002-9904-1938-06868-1 · Zbl 0020.34705
[20] DOI: 10.1017/S0305004100037403
[21] DOI: 10.1007/BF01110717 · Zbl 0169.03402
[22] Schmidt O. Yu., Math. Sbornik 31 pp 366–
[23] DOI: 10.1515/9783110868647
[24] Shemetkov L. A., Formations of Finite Groups (1978) · Zbl 0496.20014
[25] Subbotin I. Ya., Izvestiya VUZ, Math. 32 pp 126–
[26] DOI: 10.1007/BF01111111 · Zbl 0219.20021
[27] Zacher G., Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 37 pp 150–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.