×

Global dynamics above the ground state for the nonlinear Klein-Gordon equation without a radial assumption. (English) Zbl 1256.35138

Summary: We extend our result [J. Differ. Equations 250, No. 5, 2299–2333 (2011; Zbl 1213.35307)] to the non-radial case, giving a complete classification of global dynamics of all solutions with energy that is at most slightly above that of the ground state for the nonlinear Klein-Gordon equation with the focusing cubic nonlinearity in three space dimensions.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35L70 Second-order nonlinear hyperbolic equations

Citations:

Zbl 1213.35307
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Agmon S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(2), 151–218 (1975) · Zbl 0315.47007
[2] Ball, J.: Saddle point analysis for an ordinary differential equation in a Banach space, and an application to dynamic buckling of a beam. Nonlinear Elasticity, (Ed. Dickey R.) Academic Press, New York, 93–160, 1973 · Zbl 0288.34057
[3] Bates, P.W., Jones, C.K.R.T.: Invariant manifolds for semilinear partial differential equations. Dynamics Reported, Vol. 2. Dynam. Report. Ser. Dynam. Systems Appl., 2. Wiley, Chichester, 1–38, 1989 · Zbl 0674.58024
[4] Beceanu, M.: New estimates for a time-dependent Schrödinger equation. Duke Math. J. Preprint, arXiv:0909.4029 (to appear) · Zbl 1229.35224
[5] Beceanu, M.: A critical centre-stable manifold for the Schroedinger equation in three dimensions. Commun. Pure and Applied Math. Preprint, arXiv:0909.1180 (to appear) · Zbl 1234.35240
[6] Berestycki H., Cazenave T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires. C. R. Acad. Sci. Paris Sér. I Math. 293(9), 489–492 (1981) · Zbl 0492.35010
[7] Berestycki H., Lions P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983) · Zbl 0533.35029
[8] Bergh J., Löfström J.: Interpolation spaces. Springer, Berlin (1976) · Zbl 0344.46071
[9] Brenner P.: On space-time means and everywhere defined scattering operators for nonlinear Klein–Gordon equations. Math. Z. 186(3), 383–391 (1984) · Zbl 0545.35066
[10] Brenner P.: On scattering and everywhere defined scattering operators for nonlinear Klein–Gordon equations. J. Differ. Equ. 56(3), 310–344 (1985) · Zbl 0556.35107
[11] Coffman C.: Uniqueness of the ground state solution for {\(\Delta\)}u + u 3 = 0 and a variational characterization of other solutions. Arch. Ration. Mech. Anal. 46, 81–95 (1972) · Zbl 0249.35029
[12] Costin, O., Huang, M., Schlag, W.: On the spectral properties of L {\(\pm\)} in three dimensions. Preprint, arXiv:1107.0323 · Zbl 1232.35106
[13] Demanet L., Schlag W.: Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation. Nonlinearity 19(4), 829–852 (2006) · Zbl 1106.35044
[14] Duyckaerts T., Merle F.: Dynamic of threshold solutions for energy-critical NLS. Geom. Funct. Anal. 18(6), 1787–1840 (2009) · Zbl 1232.35150
[15] Duyckaerts, T., Merle, F.: Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. IMRP (2008) · Zbl 1159.35043
[16] Ginibre J., Velo G.: The global Cauchy problem for the nonlinear Klein–Gordon equation. Math. Z. 189(4), 487–505 (1985) · Zbl 0566.35084
[17] Ginibre J., Velo G.: Time decay of finite energy solutions of the nonlinear Klein–Gordon and Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 43(4), 399–442 (1985) · Zbl 0595.35089
[18] Hirsch M.W., Pugh C.C., Shub M.: Invariant manifolds. Lecture Notes in Mathematics, Vol. 583. Springer, Berlin (1977) · Zbl 0355.58009
[19] Ibrahim, S., Masmoudi, N., Nakanishi, K.: Scattering threshold for the focusing nonlinear Klein–Gordon equation. Analysis & PDE. Preprint, arXiv:1001.1474 (to appear) · Zbl 1270.35132
[20] Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162, 258–279 (1965/1966) · Zbl 0139.31203
[21] Kenig C., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006) · Zbl 1115.35125
[22] Kenig C., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201(2), 147–212 (2008) · Zbl 1183.35202
[23] Krieger J., Schlag W.: Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension. J. Am. Math. Soc. 19(4), 815–920 (2006) · Zbl 1281.35077
[24] Levine H.A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form $${Pu_{tt} = -A u +\(\backslash\)mathcal{F}(u)}$$ . Trans. Am. Math. Soc. 192, 1–21 (1974) · Zbl 0288.35003
[25] Lions P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part I. Ann. HP 1, 109–145 (1984) · Zbl 0541.49009
[26] Lions P.L.: The concentration-compactness principle in the calculus of variations. The limit case, part II. Rev. Mat. Iberoamericana 1, 145–201 (1985) · Zbl 0704.49005
[27] MorawetzC.S. Strauss W.A.: Decay and scattering of solutions of a nonlinear relativistic wave equation. Commun. Pure Appl. Math. 25, 1–31 (1972) · Zbl 0228.35055
[28] Nakanishi K., Schlag W.: Global dynamics above the ground state energy for the focusing nonlinear Klein–Gordon equation. J. Differ. Equ. 250(5), 2299–2333 (2011) · Zbl 1213.35307
[29] Nakanishi, K., Schlag, W.: Global dynamics above the ground state energy for the cubic NLS equation in 3D. Calc. Var. Partial Differ. Equ. Preprint, arXiv:1007.4025 (to appear) · Zbl 1237.35148
[30] Nakanishi, K., Schlag, W.: Invariant Manifolds and Dispersive Hamiltonian Evolution Equations. Zürich Lectures in Advanced Mathematics. Europ. Math. Soc., 2011 · Zbl 1235.37002
[31] Payne L.E., Sattinger D.H.: Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math. 22(3–4), 273–303 (1975) · Zbl 0317.35059
[32] Pecher H.: Low energy scattering for nonlinear Klein–Gordon equations. J. Funct. Anal. 63(1), 101–122 (1985) · Zbl 0588.35061
[33] Schlag W.: Stable manifolds for an orbitally unstable nonlinear Schrödinger equation. Ann. Math. (2) 169(1), 139–227 (2009) · Zbl 1180.35490
[34] Shatah J.: Unstable ground state of nonlinear Klein–Gordon equations. Trans. Am. Math. Soc. 290(2), 701–710 (1985) · Zbl 0617.35072
[35] Strauss W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149–162 (1977) · Zbl 0356.35028
[36] Strauss, W.A.: Nonlinear wave equations. CBMS Regional Conference Series in Mathematics, Vol. 73. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence, RI, 1989 · Zbl 0714.35003
[37] Vanderbauwhede, A.: Centre manifolds, normal forms and elementary bifurcations. Dynamics Reported. Dynam. Report. Vol. 2. Ser. Dynam. Systems Appl., 2, Wiley, Chichester, 89–169, 1989 · Zbl 0677.58001
[38] Weinstein M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491 (1985) · Zbl 0583.35028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.