The boundedness of maximal operators and singular integrals via Fourier transform estimates. (English) Zbl 1256.42022

Summary: The author studies the mapping properties for some general maximal operators and singular integrals on certain function spaces via Fourier transform estimates. Also, some concrete maximal operators and singular integrals are studied as applications.


42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
Full Text: DOI


[1] Frazier, M., Jawerth, B., Han, Y., et al.: The T1 theorem for Triebel-Lizorkin spaces. In: Lecture Notes in Math., Springer-Verlag, Berlin, 1384, 1989, 168–181 · Zbl 0679.46026
[2] Chen, Y., Ding, Y.: Rough singular integrals on Triebel-Lizorkin space and Besov space. J. Math. Anal. Appl., 347, 493–501 (2008) · Zbl 1257.42021
[3] Chen, Y., Ding, Y., Liu, H.: Rough singular integrals supported on submanifolds. J. Math. Anal. Appl., 368, 667–691 (2010) · Zbl 1196.42016
[4] Stein, E. M.: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993 · Zbl 0821.42001
[5] Lu, S., Xia, X.: Boundedness of singular integral operators on Triebel-Lizorkin spaces via Fourier transform estimates. PhD Thesis, Beijing Normal University, Beijing, 2007
[6] Duoandikoetxea, J., Rudio de Francia, J. L.: Maximal and singular integral operators via Fourier transform estimates. Invent. Math., 84, 541–561 (1986) · Zbl 0568.42012
[7] Grafakos, L.: Classical and Modern Fourier Analysis, Prentice-Hall, Upper Saddle River, 2003 · Zbl 1148.42001
[8] Cwikel, M., Janson, S.: Interpolation of analytic families of operators. Studia Math., 79, 61–71 (1984) · Zbl 0556.46041
[9] Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Func. Anal., 93, 34–170 (1990) · Zbl 0716.46031
[10] Stein, E. M., Wainger, S.: Problems in harmonic analysis related to curvature. Bull. Amer. Math. Soc., 84, 1239–1295 (1978) · Zbl 0393.42010
[11] Rudio de Francia, J. L., Ruiz, F. J., Torra, J. L.: Calderón-Zygmund theory for operator-valued kernels. Adv. Math., 62, 7–48 (1986) · Zbl 0627.42008
[12] Calderón, C.: Lacunary spherical means. Illinois J. Math., 23, 476–484 (1979)
[13] Coifman, R., Weiss, G.: Review of the book ”Littlewood-Paley and Multiplier Theory”. Bull. Amer. Math. Soc., 84, 242–250 (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.