zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exact null controllability of KdV-Burgers equation with memory effect systems. (English) Zbl 1256.49008
Summary: This paper is concerned with exact null controllability analysis of the nonlinear KdV-Burgers equation with memory. The proposed approach relies upon regression tools to prove the controllability property of the linearized KdV-Burgers equation via Carleman estimates. The control is distributed along with subdomain $\omega \subset \Omega$ and the external control acts on the key role of observability inequality with memory. This description finally shows the exact null controllability guaranteeing the stability.

49J20Optimal control problems with PDE (existence)
35Q53KdV-like (Korteweg-de Vries) equations
93D20Asymptotic stability of control systems
Full Text: DOI
[1] S. N. Gurbatov, A. N. Malakhov, and A. I. Saichev, Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays, Particles, Manchester University Press, Manchester, UK, 1991. · Zbl 0860.76002
[2] Y. Hu and W. A. Woyczyński, “An extremal rearrangement property of statistical solutions of Burgers’ equation,” The Annals of Applied Probability, vol. 4, no. 3, pp. 838-858, 1994. · Zbl 0805.60053 · doi:10.1214/aoap/1177004974
[3] S. A. Molchanov, D. Surgailis, and W. A. Woyczyński, “Hyperbolic asymptotics in Burgers’ turbulence and extremal processes,” Communications in Mathematical Physics, vol. 168, no. 1, pp. 209-226, 1995. · Zbl 0818.60046 · doi:10.1007/BF02099589
[4] S. Kida, “Asymptotic properties of Burgers turbulence,” Journal of Fluid Mechanics, vol. 93, no. 2, pp. 337-377, 1979. · Zbl 0436.76031 · doi:10.1017/S0022112079001932
[5] J. M. Burgers, The Nonlinear Diffusion Equations, Reidel, Dordrecht, The Netherlands, 1974. · Zbl 0302.60048
[6] O. V. Rudenkov and S. I. Soluyan, Theoretical Foundation of Nonlinear Acoustics, New york, NY, USA, 1977. · Zbl 0413.76059
[7] L. Kofman, D. Pogosyan, S. F. Shandarin, and A. L. Melott, “Coherent structures in the universe and the adhesion model,” Astrophysical Journal Letters, vol. 393, no. 2, pp. 437-449, 1992.
[8] E. Fernández-Cara, M. González-Burgos, S. Guerrero, and J.-P. Puel, “Null controllability of the heat equation with boundary Fourier conditions: the linear case,” ESAIM: Control, Optimisation and Calculus of Variations, vol. 12, no. 3, pp. 442-465, 2006. · Zbl 1106.93009 · doi:10.1051/cocv:2006010 · numdam:COCV_2006__12_3_442_0 · eudml:245950
[9] V. Barbu and M. Iannelli, “Controllability of the heat equation with memory,” Differential and Integral Equations, vol. 13, no. 10-12, pp. 1393-1412, 2000. · Zbl 0990.93008
[10] V. Barbu, “Controllability of parabolic and Navier-Stokes equations,” Scientiae Mathematicae Japonicae, vol. 56, no. 1, pp. 143-211, 2002. · Zbl 1010.93054
[11] E. Fernández-Cara and E. Zuazua, “The cost of approximate controllability for heat equations: the linear case,” Advances in Differential Equations, vol. 5, no. 4-6, pp. 465-514, 2000. · Zbl 1007.93034
[12] A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, vol. 34, Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, Korea, 1996. · Zbl 0862.49004
[13] L. Rosier, “Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line,” SIAM Journal on Control and Optimization, vol. 39, no. 2, pp. 331-351, 2000. · Zbl 0966.93055 · doi:10.1137/S0363012999353229
[14] D. L. Russell and B. Y. Zhang, “Exact controllability and stabilizability of the Korteweg-de Vries equation,” Transactions of the American Mathematical Society, vol. 348, no. 9, pp. 3643-3672, 1996. · Zbl 0862.93035 · doi:10.1090/S0002-9947-96-01672-8
[15] R. Sakthivel, “Robust stabilization the Korteweg-de Vries-Burgers equation by boundary control,” Nonlinear Dynamics, vol. 58, no. 4, pp. 739-744, 2009. · Zbl 1183.76660 · doi:10.1007/s11071-009-9514-z
[16] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, vol. 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA, 1983. · Zbl 0522.35002
[17] J.-M. Coron, “Global asymptotic stabilization for controllable systems without drift,” Mathematics of Control, Signals, and Systems, vol. 5, no. 3, pp. 295-312, 1992. · Zbl 0760.93067 · doi:10.1007/BF01211563
[18] R. A. Adams, Sobolev Spaces, Academic Press, New York, NY, USA, 2nd edition, 2003. · Zbl 0527.55016