zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A perturbed projection algorithm with inertial technique for split feasibility problem. (English) Zbl 1256.65052
Summary: This paper deals with the split feasibility problem that requires to find a point closest to a closed convex set in one space such that its image under a linear transformation will be closest to another closed convex set in the image space. By combining perturbed strategy with inertial technique, we construct an inertial perturbed projection algorithm for solving the split feasibility problem. Under some suitable conditions, we show the asymptotic convergence. The results improve and extend the algorithms presented by {\it C. Byrne} [Inverse Probl. 18, No. 2, 441--453 (2002; Zbl 0996.65048)] and by {\it J. Zhao} and {\it Q. Yang} [Inverse Probl. 21, No. 5, 1791--1799 (2005; Zbl 1080.65035)] and the related convergence theorem.

MSC:
65K05Mathematical programming (numerical methods)
90C25Convex programming
WorldCat.org
Full Text: DOI
References:
[1] Y. Censor and T. Elfving, “A multiprojection algorithm using Bregman projections in a product space,” Numerical Algorithms, vol. 8, no. 2-4, pp. 221-239, 1994. · Zbl 0828.65065 · doi:10.1007/BF02142692
[2] Y. Censor, T. Bortfeld, B. Martin, and A. Trofimov, “A unified approach for inversion problems in intensity-modulated radiation therapy,” Physics in Medicine and Biology, vol. 51, no. 10, pp. 2353-2365, 2006. · doi:10.1088/0031-9155/51/10/001
[3] H. H. Bauschke and J. M. Borwein, “On projection algorithms for solving convex feasibility problems,” SIAM Review, vol. 38, no. 3, pp. 367-426, 1996. · Zbl 0865.47039 · doi:10.1137/S0036144593251710
[4] C. Byrne, “A unified treatment of some iterative algorithms in signal processing and image reconstruction,” Inverse Problems, vol. 20, no. 1, pp. 103-120, 2004. · Zbl 1051.65067 · doi:10.1088/0266-5611/20/1/006
[5] Y. Dang and Y. Gao, “The strong convergence of a KM-CQ-like algorithm for a split feasibility problem,” Inverse Problems, vol. 27, no. 1, Article ID 015007, 2011. · Zbl 1211.65065 · doi:10.1088/0266-5611/27/1/015007
[6] C. Byrne, “Iterative oblique projection onto convex sets and the split feasibility problem,” Inverse Problems, vol. 18, no. 2, pp. 441-453, 2002. · Zbl 0996.65048 · doi:10.1088/0266-5611/18/2/310
[7] J. Zhao and Q. Yang, “Several solution methods for the split feasibility problem,” Inverse Problems, vol. 21, no. 5, pp. 1791-1799, 2005. · Zbl 1080.65035 · doi:10.1088/0266-5611/21/5/017
[8] P. S. M. Santos and S. Scheimberg, “A projection algorithm for general variational inequalities with perturbed constraint sets,” Applied Mathematics and Computation, vol. 181, no. 1, pp. 649-661, 2006. · Zbl 1148.65308 · doi:10.1016/j.amc.2006.01.050
[9] P.-E. Maingé, “Inertial iterative process for fixed points of certain quasi-nonexpansive mappings,” Set-Valued Analysis, vol. 15, no. 1, pp. 67-79, 2007. · Zbl 1129.47054 · doi:10.1007/s11228-006-0027-3
[10] P.-E. Maingé, “Convergence theorems for inertial KM-type algorithms,” Journal of Computational and Applied Mathematics, vol. 219, no. 1, pp. 223-236, 2008. · Zbl 1156.65054 · doi:10.1016/j.cam.2007.07.021
[11] A. Moudafi and E. Elisabeth, “An approximate inertial proximal method using the enlargement of a maximal monotone operator,” International Journal of Pure and Applied Mathematics, vol. 5, no. 3, pp. 283-299, 2003. · Zbl 1069.90077
[12] A. Moudafi and M. Oliny, “Convergence of a splitting inertial proximal method for monotone operators,” Journal of Computational and Applied Mathematics, vol. 155, no. 2, pp. 447-454, 2003. · Zbl 1027.65077 · doi:10.1016/S0377-0427(02)00906-8
[13] H. Attouch, Variational Convergence for Functions and Operators, Applicable Mathematics Series, Pitman, Boston, Mass, USA, 1984. · Zbl 0561.49012
[14] A. Auslender, M. Teboulle, and S. Ben-Tiba, “A logarithmic-quadratic proximal method for variational inequalities,” Computational Optimization and Applications, vol. 12, no. 1-3, pp. 31-40, 1999. · Zbl 1039.90529 · doi:10.1023/A:1008607511915
[15] Z. Opial, “Weak convergence of the sequence of successive approximations for nonexpansive mappings,” Bulletin of the American Mathematical Society, vol. 73, pp. 591-597, 1967. · Zbl 0179.19902 · doi:10.1090/S0002-9904-1967-11761-0