×

Multigrid discretization and iterative algorithm for mixed variational formulation of the eigenvalue problem of electric field. (English) Zbl 1256.78001

Summary: This paper discusses highly finite element algorithms for the eigenvalue problem of an electric field. Combining the mixed finite element method with the Rayleigh quotient iteration method, a new multi-grid discretization scheme and an adaptive algorithm are proposed and applied to the eigenvalue problem of an electric field. Theoretical analysis and numerical results show that the computational schemes established in the paper have high efficiency.

MSC:

78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. Boffi, P. Fernandes, L. Gastaldi, and I. Perugia, “Computational models of electromagnetic resonators: analysis of edge element approximation,” SIAM Journal on Numerical Analysis, vol. 36, no. 4, pp. 1264-1290, 1999. · Zbl 1025.78014 · doi:10.1137/S003614299731853X
[2] A. Buffa and I. Perugia, “Discontinuous Galerkin approximation of the Maxwell eigenproblem,” SIAM Journal on Numerical Analysis, vol. 44, no. 5, pp. 2198-2226, 2006. · Zbl 1344.65110 · doi:10.1137/050636887
[3] A. Buffa, P. Ciarlet Jr., and E. Jamelot, “Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements,” Numerische Mathematik, vol. 113, no. 4, pp. 497-518, 2009. · Zbl 1180.78048 · doi:10.1007/s00211-009-0246-2
[4] P. Ciarlet Jr. and G. Hechme, “Computing electromagnetic eigenmodes with continuous Galerkin approximations,” Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 2, pp. 358-365, 2008. · Zbl 1194.78053 · doi:10.1016/j.cma.2008.08.005
[5] S. Caorsi, P. Fernandes, and M. Raffetto, “On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems,” SIAM Journal on Numerical Analysis, vol. 38, no. 2, pp. 580-607, 2000. · Zbl 1005.78012 · doi:10.1137/S0036142999357506
[6] F. Kikuchi, “Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism,” Computer Methods in Applied Mechanics and Engineering, vol. 64, pp. 509-521, 1987. · Zbl 0644.65087 · doi:10.1016/0045-7825(87)90053-3
[7] Y. Yang, W. Jiang, Y. Zhang, W. Wang, and H. Bi, “A two-scale discretization scheme for mixed variational formulation of eigenvalue problems,” Abstract and Applied Analysis, vol. 2012, Article ID 812914, 29 pages, 2012. · Zbl 1246.65220 · doi:10.1155/2012/812914
[8] Y. Yang and H. Bi, “Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems,” SIAM Journal on Numerical Analysis, vol. 49, no. 4, pp. 1602-1624, 2011. · Zbl 1236.65143 · doi:10.1137/100810241
[9] H. Bi and Y. Yang, “Multi-scale discretizaiton scheme based on the Rayleigh quotient iterative method for the Steklov eigenvalue problem,” Mathematical Problems in Engineering, vol. 2012, Article ID 487207, 18 pages, 2012. · Zbl 1264.65184 · doi:10.1155/2012/487207
[10] L. N. Trefethen and D. Bau III, Numerical Linear Algebra, SIAM, Philadelphia, Pa, USA, 1997. · Zbl 0874.65013 · doi:10.1137/1.9780898719574
[11] M. Costabel and M. Dauge, “Weighted regularization of Maxwell equations in polyhedral domains. A rehabilitation of nodal finite elements,” Numerische Mathematik, vol. 93, no. 2, pp. 239-277, 2002. · Zbl 1019.78009 · doi:10.1007/s002110100388
[12] Y. Yang, Finite Element Methods for Eigenvalue Problems, Science Press, Beijing, China, 2012.
[13] D. Boffi, F. Brezzi, and L. Gastaldi, “On the convergence of eigenvalues for mixed formulations,” Annali della Scuola Normale Superiore di Pisa IV, vol. 25, no. 1-2, pp. 131-154, 1997. · Zbl 1003.65052
[14] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15, Springer, New York, NY, USA, 1991. · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1
[15] I. Babu\vska and J. Osborn, “Eigenvalue problems,” in Finite Element Methods(Part 1), Handbook of Numerical Analysis, P. G. Ciarlet and J. L. Lions, Eds., vol. 2, pp. 641-787, Elsevier Science Publishers, North-Holand, 1991. · Zbl 0875.65087
[16] B. Mercier, J. Osborn, J. Rappaz, and P.-A. Raviart, “Eigenvalue approximation by mixed and hybrid methods,” Mathematics of Computation, vol. 36, no. 154, pp. 427-453, 1981. · Zbl 0472.65080 · doi:10.2307/2007651
[17] F. Chatelin, Spectral Approximation of Linear Operators, Academic Press, New York, NY, USA, 1983. · Zbl 0517.65036
[18] H. Chen, S. Jia, and H. Xie, “Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems,” Applications of Mathematics, vol. 54, no. 3, pp. 237-250, 2009. · Zbl 1212.65431 · doi:10.1007/s10492-009-0015-7
[19] P. G. Ciarlet, “Basic error estimates for elliptic problems,” in Finite Element Methods (Part1), Handbook of Numerical Analysis, P. G. Ciarlet and J. L. Lions, Eds., vol. 2, pp. 21-343, Elsevier Science Publishers, North-Holand, 1991. · Zbl 0875.65086
[20] X. Dai, J. Xu, and A. Zhou, “Convergence and optimal complexity of adaptive finite element eigenvalue computations,” Numerische Mathematik, vol. 110, no. 3, pp. 313-355, 2008. · Zbl 1159.65090 · doi:10.1007/s00211-008-0169-3
[21] V. Heuveline and R. Rannacher, “A posteriori error control for finite approximations of elliptic eigenvalue problems,” Advances in Computational Mathematics, vol. 15, no. 1-4, pp. 107-138, 2001. · Zbl 0995.65111 · doi:10.1023/A:1014291224961
[22] D. Mao, L. Shen, and A. Zhou, “Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates,” Advances in Computational Mathematics, vol. 25, no. 1-3, pp. 135-160, 2006. · Zbl 1103.65112 · doi:10.1007/s10444-004-7617-0
[23] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, “Vector potentials in three-dimensional non-smooth domains,” Mathematical Methods in the Applied Sciences, vol. 21, no. 9, pp. 823-864, 1998. · Zbl 0914.35094 · doi:10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
[24] M. Costabel, “A coercive bilinear form for Maxwell’s equations,” Journal of Mathematical Analysis and Applications, vol. 157, no. 2, pp. 527-541, 1991. · Zbl 0738.35095 · doi:10.1016/0022-247X(91)90104-8
[25] P. Ciarlet Jr., “Augmented formulations for solving Maxwell equations,” Computer Methods in Applied Mechanics and Engineering, vol. 194, no. 2-5, pp. 559-586, 2005. · Zbl 1063.78018 · doi:10.1016/j.cma.2004.05.021
[26] P. Ciarlet Jr. and V. Girault, “inf-sup condition for the 3D, P2-iso-P1, Taylor-Hood finite element application to Maxwell equations,” Comptes Rendus Mathématique, vol. 335, no. 10, pp. 827-832, 2002. · Zbl 1021.78009 · doi:10.1016/S1631-073X(02)02564-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.