zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust position control of PMSM using fractional-order sliding mode controller. (English) Zbl 1256.93053
Summary: A new robust fractional-order sliding mode controller (FOSMC) is proposed for the position control of a permanent magnet synchronous motor (PMSM). The sliding mode controller (SMC), which is insensitive to uncertainties and load disturbances, is studied widely in the application of PMSM drive. In the existing SMC method, the sliding surface is usually designed based on the integer-order integration or differentiation of the state variables, while in this proposed robust FOSMC algorithm, the sliding surface is designed based on the fractional-order calculus of the state variables. In fact, the conventional SMC method can be seen as a special case of the proposed FOSMC method. The performance and robustness of the proposed method are analyzed and tested for nonlinear load torque disturbances, and simulation results show that the proposed algorithm is more robust and effective than the conventional SMC method.
93C10Nonlinear control systems
34A08Fractional differential equations
93D09Robust stability of control systems
Full Text: DOI
[1] K. K. Shyu, C. K. Lai, Y. W. Tsai, and D. I. Yang, “A newly robust controller design for the position control of permanent-magnet synchronous motor,” IEEE Transactions on Industrial Electronics, vol. 49, no. 3, pp. 558-565, 2002. · doi:10.1109/TIE.2002.1005380
[2] F. J. Lin, “Real-time IP position controller design with torque feedforward control for PM synchronous motor,” IEEE Transactions on Industrial Electronics, vol. 44, no. 3, pp. 398-407, 1997. · doi:10.1109/41.585839
[3] F. J. Lin and Y. S. Lin, “A robust PM synchronous motor drive with adaptive uncertainty observer,” IEEE Transactions on Energy Conversion, vol. 14, no. 4, pp. 989-995, 1999. · doi:10.1109/60.815018
[4] C. K. Lai and K. K. Shyu, “A novel motor drive design for incremental motion system via sliding-mode control method,” IEEE Transactions on Industrial Electronics, vol. 52, no. 2, pp. 499-507, 2005. · doi:10.1109/TIE.2005.844230
[5] R. Errouissi and M. Ouhrouche, “Nonlinear predictive controller for a permanent magnet synchronous motor drive,” Mathematics and Computers in Simulation, vol. 81, no. 2, pp. 394-406, 2010. · Zbl 1205.78035 · doi:10.1016/j.matcom.2010.08.007
[6] A. M. Harb, “Nonlinear chaos control in a permanent magnet reluctance machine,” Chaos, Solitons & Fractals, vol. 19, no. 5, pp. 1217-1224, 2004. · Zbl 1072.78512 · doi:10.1016/S0960-0779(03)00311-4
[7] S. Zhao and K. K. Tan, “Adaptive feedforward compensation of force ripples in linear motors,” Control Engineering Practice, vol. 13, no. 9, pp. 1081-1092, 2005. · doi:10.1016/j.conengprac.2004.11.004
[8] J. Zhou and Y. Wang, “Real-time nonlinear adaptive backstepping speed control for a PM synchronous motor,” Control Engineering Practice, vol. 13, no. 10, pp. 1259-1269, 2005. · doi:10.1016/j.conengprac.2004.11.007
[9] T. L. Hsien, Y. Y. Sun, and M. C. Tsai, “H\infty control for a sensor less permanent magnet synchronous drive,” IEE Proceedings-Electric Power Applications, vol. 144, no. 3, pp. 173-181, 1997. · doi:10.1049/ip-epa:19970988
[10] A. R. Ghafari-Kashani, J. Faiz, and M. J. Yazdanpanah, “Integration of non-linear H\infty and sliding mode control techniques for motion control of a permanent magnet synchronous motor,” IET Electric Power Applications, vol. 4, no. 4, pp. 267-280, 2010. · doi:10.1049/iet-epa.2009.0108
[11] T. S. Lee, C. H. Lin, and F. J. Lin, “An adaptive H\infty controller design for permanent magnet synchronous motor drives,” Control Engineering Practice, vol. 13, no. 4, pp. 425-439, 2005. · doi:10.1016/j.conengprac.2004.04.001
[12] A. Mezouar, M. K. Fellah, and S. Hadjeri, “Adaptive sliding mode observer for induction motor using two-time-scale approach,” Electric Power Systems Research, vol. 77, no. 5-6, pp. 604-618, 2007. · doi:10.1016/j.epsr.2006.05.010
[13] N. Inanc and V. Ozbulur, “Torque ripple minimization of a switched reluctance motor by using continuous sliding mode control technique,” Electric Power Systems Research, vol. 66, no. 3, pp. 241-251, 2003. · doi:10.1016/S0378-7796(03)00093-2
[14] C. F. J. Kuo, C. H. Hsu, and C. C. Tsai, “Control of a permanent magnet synchronous motor with a fuzzy sliding-mode controller,” The International Journal of Advanced Manufacturing Technology, vol. 32, no. 7-8, pp. 757-763, 2007. · doi:10.1007/s00170-005-0393-2
[15] C. Elmas and O. Ustun, “A hybrid controller for the speed control of a permanent magnet synchronous motor drive,” Control Engineering Practice, vol. 16, no. 3, pp. 260-270, 2008. · doi:10.1016/j.conengprac.2007.04.016
[16] F. F. M. El-Sousy, “Robust wavelet-neural-network sliding-mode control system for permanent magnet synchronous motor drive,” IET Electric Power Applications, vol. 5, no. 1, pp. 113-132, 2011. · doi:10.1049/iet-epa.2009.0229
[17] Y. Feng, J. F. Zheng, X. H. Yu, and N. V. Truong, “Hybrid terminal sliding-mode observer design method for a permanent-magnet synchronous motor control system,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3424-3431, 2009. · doi:10.1109/TIE.2009.2025290
[18] S. H. Chang, Y. H. Ting, P. Y. Chen, and S. W. Hung, “Robust current control-based sliding mode control with simple uncertainties estimation in permanent magnet synchronous motor drive systems,” IET Electric Power Applications, vol. 4, no. 6, pp. 441-450, 2010. · doi:10.1049/iet-epa.2009.0146
[19] I. Podlubny, “Fractional-order systems and PI\lambda D\mu -controllers,” IEEE Transactions on Automatic Control, vol. 44, no. 1, pp. 208-214, 1999. · Zbl 1056.93542 · doi:10.1109/9.739144
[20] Y. Q. Chen, I. Petras, and D. Y. Xue, “Fractional order control-a tutorial,” in Proceedings of the American Control Conference (ACC ’09), pp. 1397-1411, June 2009. · doi:10.1109/ACC.2009.5160719
[21] A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, “Frequency-band complex noninteger differentiator: characterization and synthesis,” IEEE Transactions on Circuits and Systems I, vol. 47, no. 1, pp. 25-39, 2000. · doi:10.1109/81.817385
[22] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974. · Zbl 0292.26011
[23] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[24] Y. Q. Chen, H. S. Ahn, and I. Podlubny, “Robust stability check of fractional order linear time invariant systems with interval uncertainties,” Signal Processing, vol. 86, no. 10, pp. 2611-2618, 2006. · Zbl 1172.94385 · doi:10.1016/j.sigpro.2006.02.011
[25] M. Ö. Efe, “Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 38, no. 6, pp. 1561-1570, 2008. · doi:10.1109/TSMCB.2008.928227
[26] H. Delavari, A. N. Ranjbar, R. Ghaderi, and S. Momani, “Fractional order control of a coupled tank,” Nonlinear Dynamics, vol. 61, no. 3, pp. 383-397, 2010. · Zbl 1204.93086 · doi:10.1007/s11071-010-9656-z
[27] H. S. Li, Y. Luo, and Y. Q. Chen, “A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments,” IEEE Transactions on Control Systems Technology, vol. 18, no. 2, pp. 516-520, 2010. · doi:10.1109/TCST.2009.2019120
[28] Y. Li, Y. Q. Chen, and I. Podlubny, “Stability of fractional-order nonlinear dynamic systems: lyapunov direct method and generalized Mittag-Leffler stability,” Computers & Mathematics with Applications, vol. 59, no. 5, pp. 1810-1821, 2010. · Zbl 1189.34015 · doi:10.1016/j.camwa.2009.08.019
[29] D. Baleanu, H. Mohammadi, and S. Rezapour, “Positive solutions of an initial value problem for nonlinear fractional differential equations,” Abstract and Applied Analysis, vol. 2012, Article ID 837437, 7 pages, 2012. · Zbl 1242.35215 · doi:10.1155/2012/837437
[30] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific, New York, NY, USA, 2012. · Zbl 1248.26011 · doi:10.1142/9789814355216
[31] D. Bleanu, O. G. Mustafa, and R. P. Agarwal, “Asymptotically linear solutions for some linear fractional differential equations,” Abstract and Applied Analysis, vol. 2010, Article ID 865139, 8 pages, 2010. · Zbl 1210.34005 · doi:10.1155/2010/865139
[32] F. Jarad, T. Abdeljawad, and D. Baleanu, “On Riesz-Caputo formulation for sequential fractional variational principles,” Abstract and Applied Analysis, vol. 2012, Article ID 890396, 15 pages, 2012. · Zbl 1242.49047 · doi:10.1155/2012/890396
[33] M. O. Efe, “A fractional order adaptation law for integer order sliding mode control of a 2DOF robot,” in Proceedings of the International Workshops on New Trends in Science and Technology (NTST 08) and the Workshop Fractional Differentiation and Its Applications (FDA 09), Ankara, Turkey, November 2008. · Zbl 1311.93057
[34] S. H. Hosseinnia, R. Ghaderi, N. A. Ranjbar, M. Mahmoudian, and S. Momani, “Sliding mode synchronization of an uncertain fractional order chaotic system,” Computers & Mathematics with Applications, vol. 59, no. 5, pp. 1637-1643, 2010. · Zbl 1189.34011 · doi:10.1016/j.camwa.2009.08.021
[35] B. T. Zhang and Y. Pi, “Robust fractional order proportion-plus-differential controller based on fuzzy inference for permanent magnet synchronous motor,” IET Control Theory & Applications, vol. 6, no. 6, pp. 829-837, 2012. · doi:10.1049/iet-cta.2011.0412
[36] Y. Luo, Y. Q. Chen, H. S. Ahn, and Y. Pi, “Fractional order robust control for cogging effect compensation in PMSM position servo systems: stability analysis and experiments,” Control Engineering Practice, vol. 18, no. 9, pp. 1022-1036, 2010. · doi:10.1016/j.conengprac.2010.05.005
[37] Y. Q. Chen, “Impulse response invariant discretization of fractional order integrators/differentiators is to compute a discrete-time finite dimensional (z) transfer function to approximate sr with r a real number,” Category: Filter Design and Analysis, MATLAB Central, 2008, http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do objectId=21342 objectType=FILE.