Shyu, Kuo-Kai; Pham, Van-Truong; Tran, Thi-Thao; Lee, Po-Lei Global and local fuzzy energy-based active contours for image segmentation. (English) Zbl 1256.94014 Nonlinear Dyn. 67, No. 2, 1559-1578 (2012). Summary: This paper proposes a novel active contour model for image segmentation based on techniques of curve evolution. The paper introduces an energy functional including a local fuzzy energy and a global fuzzy energy to attract the active contour and stop it on the object boundaries. The local term allows the method to deal with intensity inhomogeneity in images. The global term, aside from driving the contour toward the desired objects, is used to avoid unsatisfying results led by unsuitable initial contour position, a common limitation of models using local information solely. In addition, instead of solving the Euler-Lagrange equation, the paper directly calculates the alterations of the fuzzy energy. By this way, the contour converges quickly to the object boundary. Experimental results on both 2D and 3D images validate the effectiveness of the model when working with intensity inhomogeneous images. Cited in 5 Documents MSC: 94A08 Image processing (compression, reconstruction, etc.) in information and communication theory Keywords:global and local minimization; image segmentation; active contour; fuzzy energy; curve evolution; level set method PDF BibTeX XML Cite \textit{K.-K. Shyu} et al., Nonlinear Dyn. 67, No. 2, 1559--1578 (2012; Zbl 1256.94014) Full Text: DOI References: [1] Pham, D., Xu, C., Prince, J.: A survey of current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 315–337 (2000) [2] Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color texture, motion and shape. Int. J. Comput. Vis. 72(5), 195–215 (2007) · Zbl 05146316 [3] Munoz, X., Freixenet, J., Cufi, X., Marti, J.: Strategies for image segmentation combining region and boundary information. Pattern Recognit. 24(1), 375–392 (2003) · Zbl 01967319 [4] Pham, D.L., Prince, J.L.: An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognit. Lett. 20(1), 57–68 (1999) · Zbl 0920.68148 [5] Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002) [6] Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988) · Zbl 0646.68105 [7] Ghanei, A., Soltanian-Zadeh, H., Windham, J.P.: Segmentation of hippocampus from brain MRI using deformable contours. Comput. Med. Imaging Graph. 22(3), 203–216 (1998) · Zbl 05327543 [8] Amini, L., Soltanian-Zadeh, H., Lucas, C., Gity, M.: Automatic segmentation of thalamus from brain MRI integrating fuzzy clustering and dynamic contours. IEEE Trans. Biomed. Eng. 51(5), 800–811 (2004) [9] Li, S., Fevens, T., Krzyzak, A., Jin, C., Li, S.: Semi-automatic computer aided lesion detection in dental X-rays using variational level set. Pattern Recognit. 40(10), 2861–2873 (2007) · Zbl 05170533 [10] Gooya, A., Liao, H., Matsumiya, K., Masamune, K., Masutani, Y., Dohi, T.: A variational method for geometric regularization of vascular segmentation in medical images. IEEE Trans. Image Process. 17(8), 1295–1312 (2008) · Zbl 05516541 [11] He, L., Peng, Z., Everding, B., Wang, X., Han, C., Weiss, K., Wee, W.G.: A comparative study of deformable contour methods on medical image segmentation. Image Vis. Comput. 26(2), 141–163 (2008) [12] Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66(1), 1–31 (1993) · Zbl 0804.68159 [13] Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997) · Zbl 0894.68131 [14] Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A geometric snake model for segmentation of medical imagery. IEEE Trans. Med. Imaging 16(2), 199–209 (1997) [15] Cohen, L., Kimmel, R.: Global minimum for active contour models: A minimal path approach. Int. J. Comput. Vis. 24(1), 57–78 (1997) · Zbl 05472018 [16] Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys. 79(1), 12–49 (1988) · Zbl 0659.65132 [17] Paragios, N., Gottardo, O., Ramesh, V.: Gradient vector flow fast geometric active contours. IEEE Trans. Pattern Anal. Mach. Intell. 26, 402–407 (2004) · Zbl 05110865 [18] Zhu, S., Yuille, A.: Region competition: Unifying snakes, region growing, and Bayes model for multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(9), 884–900 (1996) · Zbl 05112355 [19] Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001) · Zbl 1039.68779 [20] Xu, N., Ahuja, N.: Object contour tracking using graph cuts based active contours. In: Proceedings of IEEE International. Conference on Computer Vision, Rochester, New York, USA, pp. 277–280 (2002) [21] Xu, N., Bansal, R., Ahuja, N.: Object segmentation using graph cuts based active contours. In: IEEE International Conference Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, pp. 46–53 (2003) [22] Gibou, F., Fedkiw, R.: A fast hybrid k-means level set algorithm for segmentation. In: Proceedings of 4th Annual Hawaii International Conference on Statistics and Mathematics, Honolulu, Hawaii, USA, pp. 281–291 (2005) [23] Chen, Z., Qui, T., Ruan, S.: Fuzzy adaptive level set algorithm for brain tissue segmentation. In: Proceedings of International Conference Signal Processing, Beijing, China, pp. 1047–1050 (2008) [24] Krinidis, S., Chatzis, V.: Fuzzy energy-based active contour. IEEE Trans. Image Process. 18(12), 2747–2755 (2009) · Zbl 1371.94200 [25] Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008) · Zbl 1371.94213 [26] Li, C., Kao, C., Gore, J., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008) · Zbl 1371.94225 [27] Piovano, J., Papadopoulo, T.: Local statistics based region segmentation with automatic scale selection. In: Proceedings of European Conference in Computer Vision (ECCV), Marseille, France, pp. 486–499 (2008) [28] Song, B., Chan, T.: A fast algorithm for level set based optimization. UCLA CAM Report 02-68 (2002) [29] He, L., Osher, S.: Solving the Chan-Vese model by a multiphase level set algorithm based on the topological derivative level set algorithm based on the topological derivative. UCLA CAM Report 06-56 (2006) [30] Pan, Y., Birdwell, D.J., Djouadi, S.M.: Efficient implementation of the Chan-Vese models without solving PDEs. In: Proceedings of International Workshop on Multimedia Signal Processing, pp. 350–353 (2006) [31] Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990) · Zbl 05111848 [32] Ha, J., Johnson, E.N., Tannenbaum, A.: Real-time visual tracking using geometric active contours for the navigation and control of UAVs. In: Proceedings of American Control Conference, New York, USA, pp. 365–370 (2007) [33] He, L., Osher, S.: Solving the Chan-Vese model by a multiphase level set algorithm based on the topological derivative level set algorithm based on the topological derivative. UCLA CAM Report 06-56 (2006) [34] He, L., Zheng, S., Wang, L.: Integrating local distribution information with level set for boundary extraction. J. Vis. Commun. Image Represent. 21(4), 343–354 (2010) · Zbl 05766702 [35] Wang, L., Li, C., Sun, Q., Xia, D., Kao, C.: Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comput. Med. Imaging Graph. 33(7), 520–531 (2009) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.