Büyükboduk, Kâzım Stickelberger elements and Kolyvagin systems. (English) Zbl 1257.11099 Nagoya Math. J. 203, 123-173 (2011). Let \(k\) be a totally real field with absolute Galois group \(G_k\) and let \(p\) be an odd prime. Fix an odd character \(\chi: G_k \rightarrow \mathbb Z_p^{\times}\) different from the Teichmüller character and a field \(K\) containing the fixed field \(L\) cut out by \(\chi\). The author assumes that the \(\chi\)-part of the \(p\)-part of Brumer’s conjecture holds for the extension \(K/k\), i.e. the \(\chi\)-part of the Stickelberger element \(\theta_K^{\chi}\) annihilates \(A_K^{\chi}\), the \(\chi\)-isotypic part of the \(p\)-part of the class group of \(K\). He then uses the Euler system / Kolyvagin system machinery to prove the equality \[ |A_L^{\chi}| = |\mathbb Z_p / \theta_L^{\chi} \mathbb Z_p| \] under the condition that \(\chi(\wp) \not=1\) for any prime \(\wp\) of \(k\) above \(p\). With a bit more work he then derives from this a variant of the main conjecture, namely he shows that the characteristic polynomial of the Pontryagin dual of the direct limit of the \(A_{L_n}^{\chi}\) (where \(L_n\) denotes the \(n\)-th layer in the cyclotomic tower) is given by a certain twist of the Deligne-Ribet \(p\)-adic \(L\)-function. This is done under the additional assumption that any prime of \(k\) above \(p\) totally ramifies in the cyclotomic extension (reviewer’s remark: on top of p. 125 the author mentions that this is true whenever \(k/\mathbb Q\) is unramified; but what he certainly means is that \(p\) does not ramify – otherwise this would not provide many examples). Note that as a consequence of the above condition on \(\chi\), the associated \(p\)-adic \(L\)-series has no trivial zeros.We point out that none of these results is really new; in fact both have been proven unconditionally and in greater generality by A. Wiles [Ann. Math. (2) 131, No. 3, 493–540 (1990; Zbl 0719.11071) and Ann. Math. (2) 131, No. 3, 555–565 (1990; Zbl 0719.11082)]. But the purpose of this article is to explore how Kolyvagin systems may be used to bound the size of a Selmer group when the core Selmer rank (in the sense of B. Mazur and K. Rubin [Kolyvagin systems. Mem. Am. Math. Soc. 799, 96 p. (2004; Zbl 1055.11041)]) is strictly greater than \(1\). Here, the core Selmer rank of the considered Galois representations equals the degree \([k: \mathbb Q]\).Finally, note that the author first shows one inequality of the above displayed equality and then uses the usual ‘class number trick’ in order to obtain equality. For this, he assumes that this inequality holds for the Teichmüller character as well (if a \(p\)-th root of unity belongs to \(L\)). But in fact, one needs this inequality for all characters of \(\text{Gal}(L/k)\), some of which may fail the above condition. The author kindly explained me that one still can prove the corresponding statement for all the remaining characters by considering an ‘improved Euler system’; the argument is then very similar to what happens in the author’s article [J. Reine Angew. Math. 631, 85–107 (2009; Zbl 1216.11102)]. Reviewer: Andreas Nickel (Bielefeld) Cited in 3 Documents MSC: 11R23 Iwasawa theory 11R42 Zeta functions and \(L\)-functions of number fields 11R29 Class numbers, class groups, discriminants Keywords:Stickelberger elements; Kolyvagin systems; Euler systems; class groups; main conjecture; Iwasawa theory Citations:Zbl 0719.11071; Zbl 0719.11082; Zbl 1055.11041; Zbl 1216.11102 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] K. Büyükboduk, Kolyvagin systems of Stark units , J. Reine Angew. Math. 631 (2009), 85-107. [2] K. Büyükboduk, Stark units and the main conjectures for totally real fields , Compos. Math. 145 (2009), 1163-1195. · Zbl 1256.11060 [3] K. Büyükboduk, \Lambda -adic Kolyvagin systems , Int. Math. Res. Notices (2010), doi: 10:1093/ imrn/rnq186. [4] K. Büyükboduk, On Euler systems of rank r and their Kolyvagin systems , Indiana Univ. Math. J. 59 (2010), 1245-1276. [5] P. Colmez, Théorie d’Iwasawa des représentations de de Rham d’un corps local , Ann. of Math. (2) 148 (1998), 485-571. · Zbl 0928.11045 · doi:10.2307/121003 [6] P. Deligne and K. A. Ribet, Values of abelian L-functions at negative integers over totally real fields , Invent. Math. 59 (1980), 227-286. · Zbl 0434.12009 · doi:10.1007/BF01453237 [7] E. de Shalit, Iwasawa Theory of Elliptic Curves with Complex Multiplication , Perspect. Math. 3 , Academic Press, Boston, 1987. · Zbl 0674.12004 [8] R. Greenberg, “Trivial zeros of p -adic L -functions” in p-Adic Monodromy and the Birch and Swinnerton-Dyer Conjecture (Boston, MA, 1991) , Contemp. Math. 165 , Amer. Math. Soc., Providence, 1994, 149-174. · Zbl 0838.11070 [9] C. Greither, Computing fitting ideals of Iwasawa modules , Math. Z. 246 (2004), 733-767. · Zbl 1067.11067 · doi:10.1007/s00209-003-0610-3 [10] K. Kato, Euler systems, Iwasawa theory, and Selmer groups , Kodai Math. J. 22 (1999), 313-372. · Zbl 0993.11033 · doi:10.2996/kmj/1138044090 [11] M. Kurihara, On the structure of ideal class groups of CM-fields , Doc. Math. DMV Extra Vol (2003), 539-563. · Zbl 1135.11339 [12] B. Mazur and K. Rubin, Kolyvagin systems , Mem. Amer. Math. Soc. 168 (2004), viii+96. · Zbl 1055.11041 [13] B. Mazur and K. Rubin, Refined class number formulas and Kolyvagin systems , preprint, · Zbl 1225.11144 · doi:10.1112/S0010437X1000494X [14] J. S. Milne, Arithmetic Duality Theorems , Perspect. Math. 1 , Academic Press, Boston, 1986. · Zbl 0613.14019 [15] B. Perrin-Riou, Théorie d’Iwasawa des représentations p-adiques sur un corps local , with an appendix by J.-M. Fontaine, Invent. Math. 115 (1994), 81-161. · Zbl 0838.11071 · doi:10.1007/BF01231755 [16] B. Perrin-Riou, Systèmes d’Euler p-adiques et théorie d’Iwasawa , Ann. Inst. Fourier (Grenoble) 48 (1998), 1231-1307. · Zbl 0930.11078 · doi:10.5802/aif.1655 [17] K. Rubin, Stark units and Kolyvagin’s “Euler systems,” J. Reine Angew. Math. 425 (1992), 141-154. · Zbl 0752.11045 · doi:10.1515/crll.1992.425.141 [18] K. Rubin, A Stark conjecture “over Z for abelian L-functions with multiple zeros , Ann. Inst. Fourier (Grenoble) 46 (1996), 33-62. · Zbl 0834.11044 · doi:10.5802/aif.1505 [19] K. Rubin, Euler Systems , Ann. of Math. Stud. 147 , Princeton University Press, Princeton, 2000. [20] C. L. Siegel, Über die Fourierschen Koeffizienten von Modulformen , Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1970 , 15-56. · Zbl 0225.10031 [21] J. Tate, Les conjectures de Stark sur les fonctions L d’Artin en s = 0, Progr. Math. 47 , Birkhäuser, Boston, 1984. · Zbl 0545.12009 [22] A. Wiles, On a conjecture of Brumer , Ann. of Math. (2) 131 (1990), 555-565. · Zbl 0719.11082 · doi:10.2307/1971470 [23] A. Wiles, The Iwasawa conjecture for totally real fields , Ann. of Math. (2) 131 (1990), 493-540. · Zbl 0719.11071 · doi:10.2307/1971468 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.