Notes on parameters of quiver Hecke algebras. (English) Zbl 1257.20005

Summary: Varagnolo-Vasserot and Rouquier proved that, in a symmetric generalized Cartan matrix case, the simple modules over the quiver Hecke algebra with a special parameter correspond to the upper global basis. In this note we show that the simple modules over the quiver Hecke algebras with a ‘generic’ parameter also correspond to the upper global basis in a symmetric generalized Cartan matrix case.


20C08 Hecke algebras and their representations
17B37 Quantum groups (quantized enveloping algebras) and related deformations
05E10 Combinatorial aspects of representation theory
16G20 Representations of quivers and partially ordered sets
Full Text: DOI arXiv Euclid


[1] S. Ariki, On the decomposition numbers of the Hecke algebra of \(G(m,1,n)\), J. Math. Kyoto Univ. 36 (1996), no. 4, 789-808. · Zbl 0888.20011
[2] A. Grothendieck, Éléments de géométrie algébrique II, Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. 8 (1961), 5-222.
[3] S.-J. Kang and M. Kashiwara, Categorification of Highest Weight Modules via Khovanov-Lauda-Rouquier Algebras, arXiv: · Zbl 1280.17017 · doi:10.1007/s00222-012-0388-1
[4] M. Kashiwara, On crystal bases of the \(Q\)-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465-516. · Zbl 0739.17005 · doi:10.1215/S0012-7094-91-06321-0
[5] M. Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), no. 2, 455-485. · Zbl 0774.17018 · doi:10.1215/S0012-7094-93-06920-7
[6] M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309-347. · Zbl 1188.81117 · doi:10.1090/S1088-4165-09-00346-X
[7] M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc. 363 (2011), no. 5, 2685-2700. · Zbl 1214.81113 · doi:10.1090/S0002-9947-2010-05210-9
[8] A. Lascoux, B. Leclerc and J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), no. 1, 205-263. · Zbl 0874.17009 · doi:10.1007/BF02101678
[9] A. D. Lauda and M. Vazirani, Crystals from categorified quantum groups, Adv. Math. 228 (2011), no. 2, 803-861. · Zbl 1246.17017 · doi:10.1016/j.aim.2011.06.009
[10] G. Lusztig, Introduction to quantum groups , Progress in Mathematics, 110, Birkhäuser Boston, Boston, MA, 1993. · Zbl 0788.17010
[11] R. Rouquier, 2-Kac-Moody algebras, arXiv: · Zbl 1072.20007
[12] R. Rouquier, Quiver Hecke algebras and 2-Lie algebras, arXiv: · Zbl 1247.20002 · doi:10.1142/S1005386712000247
[13] M. Varagnolo and E. Vasserot, Canonical bases and KLR-algebras, J. Reine Angew. Math. 659 (2011), 67-100. · Zbl 1229.17019 · doi:10.1515/CRELLE.2011.068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.