×

zbMATH — the first resource for mathematics

A non-classical solution to a Hessian equation from Cartan isoparametric cubic. (English) Zbl 1257.35092
The authors construct a non-smooth solution to a Hessian fully nonlinear second-order uniformly elliptic equation using the Cartan isoparametric cubic in 5 dimensions.
Reviewer: Jiaqi Mo (Wuhu)

MSC:
35J60 Nonlinear elliptic equations
35J15 Second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Armstrong, S.N.; Silvestre, L.; Smart, C.K., Partial regularity of solutions of fully nonlinear uniformly elliptic equations, Comm. pure appl. math., 65, 1169-1184, (2012) · Zbl 1255.35105
[2] Caffarelli, L., Interior a priory estimates for solutions of fully nonlinear equations, Ann. of math., 130, 189-213, (1989) · Zbl 0692.35017
[3] Caffarelli, L.; Cabre, X., Fully nonlinear elliptic equations, (1995), Amer. Math. Soc Providence, R.I · Zbl 0834.35002
[4] Caffarelli, L.; Nirenberg, L.; Spruck, J., The Dirichlet problem for nonlinear second order elliptic equations III. functions of the eigenvalues of the Hessian, Acta math., 155, 261-301, (1985) · Zbl 0654.35031
[5] Cartan, É., Sur des familles remarquables d’hypersurfaces isoparamétriques dans LES espaces sphériques, Math. Z., 45, 335-367, (1939) · JFM 65.0792.01
[6] Crandall, M.G.; Ishii, H.; Lions, P-L., User’s guide to viscosity solutions of second order partial differential equations, Bull. amer. math. soc. (N.S.), 27, 1, 1-67, (1992) · Zbl 0755.35015
[7] Friedman, A., ()
[8] Hsiang, W.Y., Remarks on closed minimal submanifolds in the standard Riemannian \(m\)-sphere, J. differential geom., 1, 257-267, (1967) · Zbl 0168.42904
[9] Lawson, H.B., Complete minimal surfaces in \(S^3\), Ann. of math., 92, 335-374, (1970) · Zbl 0205.52001
[10] Münzner, H.-F., Isoparametrische hyperflächen in sphären, Math. ann., 251, 57-71, (1980) · Zbl 0417.53030
[11] Nadirashvili, N.; Vlăduţ, S., Nonclassical solutions of fully nonlinear elliptic equations, Geom. funct. anal., 17, 1283-1296, (2007) · Zbl 1132.35036
[12] Nadirashvili, N.; Vlăduţ, S., Singular viscosity solutions to fully nonlinear elliptic equations, J. math. pures appl., 89, 107-113, (2008) · Zbl 1133.35049
[13] Nadirashvili, N.; Vlăduţ, S., Octonions and singular solutions of Hessian elliptic equations, Geom. funct. anal., 21, 483-498, (2011) · Zbl 1216.35041
[14] Nadirashvili, N.; Vlăduţ, S., Singular solutions of Hessian fully nonlinear elliptic equations, Adv. math., 228, 1718-1741, (2011) · Zbl 1226.35027
[15] Perdomo, O., Characterization of order 3 algebraic immersed minimal surfaces of \(S^3\), Geom. dedicata, 129, 23-34, (2007) · Zbl 1137.53019
[16] Tkachev, V.G., Minimal cubic cones via Clifford algebras, Complex anal. oper. theory, 4, 685-700, (2010) · Zbl 1226.53060
[17] V.G. Tkachev, On a classification of minimal cubic cones in \(\mathbf{R}^n\), arXiv:1009.5409.
[18] Trudinger, N., Hölder gradient estimates for fully nonlinear elliptic equations, Proc. roy. soc. Edinburgh sect. A, 108, 57-65, (1988) · Zbl 0653.35026
[19] Trudinger, N., On the Dirichlet problem for Hessian equations, Acta math., 175, 151-164, (1995) · Zbl 0887.35061
[20] Trudinger, N., Weak solutions of Hessian equations, Comm. partial differential equations, 22, 1251-1261, (1997) · Zbl 0883.35035
[21] Weyl, G., Das asymptotische verteilungsgezets des eigenwerte lineare partieller differentialgleichungen, Math. ann., 71, 441-479, (1912) · JFM 43.0436.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.