zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
$q$-hyperconvexity in quasipseudometric spaces and fixed point theorems. (English) Zbl 1257.54040
Let $(H,d)$ be a $q$-hyperconvex $T_0$-quasimetric space, and ${\cal E}_q(H)$ stand for the set of all (nonempty) externally $q$-hyperconvex subsets of $(H,d)$. The following are the main results in the paper: Theorem 1. Let $X$ be a nonempty set, and $T^*:X\to {\cal E}_q(H)$ be a mapping. There exists then a mapping $T:X\to H$ which selects $T^*$ [i.e.: $T(x)\in T^*(x)$, for all $x\in X$], such that $d(Tx,Ty)\le d_H(T^*(x),T^*(y))$, for all $x,y\in X$. Theorem 2. Let $T^*:H\to {\cal E}_q(H)$ be a nonexpansive map with $\text{Fix}(T^*)\ne \emptyset$. There exists then a nonexpansive mapping $T:H\to H$ which selects $T^*$, such that $\text{Fix}(T)=\text{Fix}(T^*)$. The obtained facts complete the investigation of these concepts started in {\it E. Kemajou, H.-P. Künzi} and {\it O. O. Otafudu} [Topology Appl. 159, No. 9, 2463--2475 (2012; Zbl 1245.54023)].

MSC:
54H25Fixed-point and coincidence theorems in topological spaces
54C65Continuous selections
WorldCat.org
Full Text: DOI
References:
[1] E. Kemajou, Hans-P.A. Künzi, and O. Olela Otafudu, “The Isbell-hull of a di-space,” Topology and Its Applications, vol. 159, no. 9, pp. 2463-2475, 2012. · Zbl 1245.54023 · doi:10.1016/j.topol.2011.02.016
[2] H.-P.A. Künzi and O. Olela Otafudu, “The ultra-quasi-metrically injective hull of a T0-ultra-quasi-metric space,” Applied Categorical Structures. In press. · Zbl 1284.54040
[3] E. M. Jawhari, M. Pouzet, and D. Misane, “Retracts: graphs and ordered sets from the metric point of view,” in Combinatorics and Ordered Sets, vol. 57 of Contemporary Mathematics, pp. 175-226, American Mathematical Society, Providence, RI, USA, 1986. · Zbl 0597.54028 · doi:10.1090/conm/057/856237
[4] P. Fletcher and W. F. Lindgren, Quasi-Uniform Spaces, vol. 77 of Lecture Notes in Pure and Applied Mathematics, Marcel, New York, NY, USA, 1982. · Zbl 0501.54018
[5] Hans-P.A. Künzi, “An introduction to quasi-uniform spaces,” in Beyond Topology, vol. 486 of Contemporary Mathematics, pp. 239-304, American Mathematical Society, Providence, RI, USA, 2009. · Zbl 1193.54014 · doi:10.1090/conm/486/09511
[6] S. Cobza\cs, “Completeness in quasi-metric spaces and Ekeland Variational Principle,” Topology and Its Applications, vol. 158, no. 8, pp. 1073-1084, 2011. · Zbl 1217.54026 · doi:10.1016/j.topol.2011.03.003
[7] J. Gutiérrez García, S. Romaguera, and J. M. Sánchez-Álvarez, “Quasi-metrics and monotone normality,” Topology and Its Applications, vol. 158, no. 15, pp. 2049-2055, 2011. · Zbl 1264.54038 · doi:10.1016/j.topol.2011.06.046
[8] S. Romaguera and P. Tirado, “The complexity probabilistic quasi-metric space,” Journal of Mathematical Analysis and Applications, vol. 376, no. 2, pp. 732-740, 2011. · Zbl 1227.54035 · doi:10.1016/j.jmaa.2010.11.056
[9] S. Romaguera and O. Valero, “Domain theoretic characterisations of quasi-metric completeness in terms of formal balls,” Mathematical Structures in Computer Science, vol. 20, no. 3, pp. 453-472, 2010. · Zbl 1193.54016 · doi:10.1017/S0960129510000010
[10] G. Berthiaume, “On quasi-uniformities in hyperspaces,” Proceedings of the American Mathematical Society, vol. 66, no. 2, pp. 335-343, 1977. · Zbl 0345.54026 · doi:10.2307/2040957
[11] H.-P. Künzi and C. Ryser, “The Bourbaki quasi-uniformity,” Topology Proceedings, vol. 20, pp. 161-183, 1995. · Zbl 0876.54022 · http://at.yorku.ca/b/a/a/a/20.htm
[12] S. Salbany, “Injective objects and morphisms,” in Categorical Topology and Its Relation to Analysis, Algebra and Combinatorics, pp. 394-409, World Scientific, Teaneck, NJ, USA, 1989.
[13] M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, Pure and Applied Mathematics, Wiley-Interscience, New York, NY, USA, 2001. · Zbl 1318.47001 · doi:10.1002/9781118033074
[14] R. C. Sine, “On nonlinear contraction semigroups in sup norm spaces,” Nonlinear Analysis, vol. 3, no. 6, pp. 885-890, 1979. · Zbl 0423.47035 · doi:10.1016/0362-546X(79)90055-5
[15] P. M. Soardi, “Existence of fixed points of nonexpansive mappings in certain Banach lattices,” Proceedings of the American Mathematical Society, vol. 73, no. 1, pp. 25-29, 1979. · Zbl 0371.47048 · doi:10.2307/2042874
[16] J.-B. Baillon, “Nonexpansive mapping and hyperconvex spaces,” in Fixed Point Theory and Its Applications, vol. 72 of Contemporary Mathematics, pp. 11-19, American Mathematical Society, Providence, RI, USA, 1988. · Zbl 0653.54021 · doi:10.1090/conm/072/956475
[17] R. Espínola and M. A. Khamsi, “Introduction to hyperconvex spaces,” in Handbook of Metric Fixed Point Theory, pp. 391-435, Kluwer Academic, Dordrecht, The Netherlands, 2001. · Zbl 1029.47002
[18] M. A. Khamsi, W. A. Kirk, and C. Martinez Yañez, “Fixed point and selection theorems in hyperconvex spaces,” Proceedings of the American Mathematical Society, vol. 128, no. 11, pp. 3275-3283, 2000. · Zbl 0959.47032 · doi:10.1090/S0002-9939-00-05777-4
[19] M. A. Khamsi, “On asymptotically nonexpansive mappings in hyperconvex metric spaces,” Proceedings of the American Mathematical Society, vol. 132, no. 2, pp. 365-373, 2004. · Zbl 1043.47040 · doi:10.1090/S0002-9939-03-07172-7
[20] R. Sine, “Hyperconvexity and approximate fixed points,” Nonlinear Analysis, vol. 13, no. 7, pp. 863-869, 1989. · Zbl 0694.54033 · doi:10.1016/0362-546X(89)90079-5
[21] N. Aronszajn and P. Panitchpakdi, “Extension of uniformly continuous transformations and hyperconvex metric spaces,” Pacific Journal of Mathematics, vol. 6, pp. 405-439, 1956. · Zbl 0074.17802 · doi:10.2140/pjm.1956.6.405