A semiparametric regression model for paired longitudinal outcomes with application in childhood blood pressure development. (English) Zbl 1257.62043

Summary: This research examines the simultaneous influences of height and weight on longitudinally measured systolic and diastolic blood pressure in children. Previous studies have shown that both height and weight are positively associated with blood pressure. In children, however, the concurrent increases of height and weight have made it all but impossible to discern the effect of height from that of weight. To better understand these influences, we propose to examine the joint effect of height and weight on blood pressure. Bivariate thin plate spline surfaces are used to accommodate the potentially nonlinear effects as well as the interaction between height and weight. Moreover, we consider a joint model for paired blood pressure measures, that is, systolic and diastolic blood pressure, to account for the underlying correlation between the two measures within the same individual. The bivariate spline surfaces are allowed to vary across different groups of interest. We have developed related model fitting and inference procedures. The proposed method is used to analyze data from a real clinical investigation.


62G08 Nonparametric regression and quantile regression
62P10 Applications of statistics to biology and medical sciences; meta analysis
92C50 Medical applications (general)
65C60 Computational problems in statistics (MSC2010)
Full Text: DOI arXiv Euclid


[1] Anderson, S. E. and Whitaker, R. C. (2009). Prevalence of obesity among US preschool children in different racial and ethnic groups. Archives of Pediatrics & Adolescent Medicine 163 344-348.
[2] Baker, J. L., Olsen, L. W. and Sorensen, T. (2007). Childhood body-mass index and the risk of coronary heart disease in adulthood. New England Journal of Medicine 357 2329-2337.
[3] Brady, T. M., Fivush, B., Parekh, R. S. and Flynn, J. T. (2010). Racial differences among children with primary hypertension. Pediatrics 126 931-937.
[4] Brezger, A., Fahrmeir, L. and Hennerfeind, A. (2007). Adaptive Gaussian Markov random fields with applications in human brain mapping. J. Roy. Statist. Soc. Ser. C 56 327-345. · doi:10.1111/j.1467-9876.2007.00580.x
[5] Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. J. Amer. Statist. Assoc. 74 829-836. · Zbl 0423.62029 · doi:10.2307/2286407
[6] Crainiceanu, C. M., Diggle, P. J. and Rowlingson, B. (2008). Bivariate binomial spatial modeling of Loa loa prevalence in tropical Africa. J. Amer. Statist. Assoc. 103 21-37. · Zbl 1469.86015 · doi:10.1198/016214507000001409
[7] Crainiceanu, C. M. and Ruppert, D. (2004). Likelihood ratio tests in linear mixed models with one variance component. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 165-185. · Zbl 1061.62027 · doi:10.1111/j.1467-9868.2004.00438.x
[8] Davidson, R. and Flachaire, E. (2008). The wild bootstrap, tamed at last. J. Econometrics 146 162-169. · Zbl 1418.62183 · doi:10.1016/j.jeconom.2008.08.003
[9] Davy, K. P. and Hall, J. E. (2004). Obesity and hypertension: Two epidemics or one? American Journal of Physiology-Regulatory Integrative and Comparative Physiology 286 R803-R813.
[10] Dean, C. B., Nathoo, F. and Nielsen, J. D. (2007). Spatial and mixture models for recurrent event processes. Environmetrics 18 713-725. · doi:10.1002/env.870
[11] Dubin, J. A. and Müller, H.-G. (2005). Dynamical correlation for multivariate longitudinal data. J. Amer. Statist. Assoc. 100 872-881. · Zbl 1117.62320 · doi:10.1198/016214504000001989
[12] Falkner, B. (2010). Hypertension in children and adolescents: Epidemiology and natural history. Pediatr. Nephrol. 25 1219-1224.
[13] Falkner, B. and Gidding, S. (2011). Childhood obesity and blood pressure: Back to the future? Hypertension 58 754-755.
[14] Falkner, B., Gidding, S. S., Ramirez-Garnica, G., Wiltrout, S. A., West, D. and Rappaport, E. B. (2006). The relationship of body mass index and blood pressure in primary care pediatric patients. J. Pediatr. 148 195-200.
[15] Fujita, Y., Kouda, K., Nakamura, H., Nishio, N., Takeuchi, H. and Iki, M. (2010). Relationship between height and blood pressure in Japanese schoolchildren. Pediatr. Int. 52 689-693.
[16] Ghosh, P. and Hanson, T. (2010). A semiparametric Bayesian approach to multivariate longitudinal data. Aust. N. Z. J. Stat. 52 275-288. · Zbl 1373.62381
[17] Ghosh, P. and Tu, W. (2009). Assessing sexual attitudes and behaviors of young women: A joint model with nonlinear time effects, time varying covariates, and dropouts. J. Amer. Statist. Assoc. 104 474-485. · Zbl 1388.62254 · doi:10.1198/jasa.2009.0013
[18] Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Models : A Roughness Penalty Approach. Monographs on Statistics and Applied Probability 58 . Chapman & Hall, London. · Zbl 0832.62032
[19] Guillas, S. and Lai, M.-J. (2010). Bivariate splines for spatial functional regression models. J. Nonparametr. Stat. 22 477-497. · Zbl 1189.62068 · doi:10.1080/10485250903323180
[20] Guo, X. and Carlin, B. P. (2004). Separate and joint modeling of longitudinal and event time data using standard computer packages. Amer. Statist. 58 16-24. · doi:10.1198/0003130042854
[21] Hall, J. E. (2003). The kidney, hypertension, and obesity. Hypertension 41 625-633.
[22] Hall, J. E., da Silva, A. A., do Carmo, J. M., Dubinion, J., Hamza, S., Munusamy, S., Smith, G. and Stec, D. E. (2010). Obesity-induced hypertension: Role of sympathetic nervous system, leptin, and melanocortins. J. Biol. Chem. 285 17271-17276.
[23] He, X., Fung, W. K. and Zhu, Z. (2005). Robust estimation in generalized partial linear models for clustered data. J. Amer. Statist. Assoc. 100 1176-1184. · Zbl 1117.62351 · doi:10.1198/016214505000000277
[24] Huang, Z., Willett, W. C., Manson, J. E., Rosner, B., Stampfer, M. J., Speizer, F. E. and Colditz, G. A. (1998). Body weight, weight change, and risk for hypertension in women. Annals of Internal Medicine 128 81-88.
[25] Humphreys, M. H. (2011). The brain splits obesity and hypertension. Nat. Med. 17 782-783.
[26] Jones, R. H. (1993). Longitudinal Data with Serial Correlation : A State-Space Approach. Monographs on Statistics and Applied Probability 47 . Chapman & Hall, London. · Zbl 0851.62059
[27] Kohn, R., Ansley, C. F. and Tharm, D. (1991). The performance of cross-validation and maximum likelihood estimators of spline smoothing parameters. J. Amer. Statist. Assoc. 86 1042-1050. · doi:10.1080/01621459.1991.10475150
[28] Lauer, R. M. and Clarke, W. R. (1989). Childhood risk factors for high adult blood pressure: The muscatine study. Pediatrics 84 633-641.
[29] Lever, A. F. and Harrap, S. B. (1992). Essential hypertension: A disorder of growth with origins in childhood? J. Hypertens. 10 101-120.
[30] Levin, A., Morad, Y., Grotto, I., Ravid, M. and Bar-Dayan, Y. (2010). Weight disorders and associated morbidity among young adults in Israel 1990-2003. Pediatr. Int. 52 347-352.
[31] Lin, X. and Carroll, R. J. (2006). Semiparametric estimation in general repeated measures problems. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 69-88. · Zbl 1141.62026 · doi:10.1111/j.1467-9868.2005.00533.x
[32] Lin, X. and Zhang, D. (1999). Inference in generalized additive mixed models by using smoothing splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 381-400. · Zbl 0915.62062 · doi:10.1111/1467-9868.00183
[33] Liu, R. Y. (1988). Bootstrap procedures under some non-i.i.d. models. Ann. Statist. 16 1696-1708. · Zbl 0655.62031 · doi:10.1214/aos/1176351062
[34] Liu, H. and Tu, W. (2012). Supplement to “A semiparametric regression model for paired longitudinal outcomes with application in childhood blood pressure development.” . · Zbl 1257.62043
[35] Mammen, E. (1993). Bootstrap and wild bootstrap for high-dimensional linear models. Ann. Statist. 21 255-285. · Zbl 0771.62032 · doi:10.1214/aos/1176349025
[36] Masuo, K., Mikami, H., Ogihara, T. and Tuck, M. L. (2000). Weight gain-induced blood pressure elevation. Hypertension 35 1135-1140.
[37] Morris, J. S. (2002). The BLUPs are not “best” when it comes to bootstrapping. Statist. Probab. Lett. 56 425-430. · Zbl 0994.62035 · doi:10.1016/S0167-7152(02)00041-X
[38] Morris, J. S., Wang, N., Lupton, J. R., Chapkin, R. S., Turner, N. D., Hong, M. Y. and Carroll, R. J. (2001). Parametric and nonparametric methods for understanding the relationship between carcinogen-induced DNA adduct levels in distal and proximal regions of the colon. J. Amer. Statist. Assoc. 96 816-826. · Zbl 1072.62666 · doi:10.1198/016214501753208528
[39] Pickering, T. G., Hall, J. E., Appel, L. J., Falkner, B. E., Graves, J., Hill, M. N., Jones, D. W., Kurtz, T., Sheps, S. G. and Roccella, E. J. (2005). Recommendations for blood pressure measurement in humans and experimental animals: Part 1: Blood pressure measurement in humans: A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension 45 142-161.
[40] Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS . Springer, New York. · Zbl 0953.62065 · doi:10.1007/b98882
[41] Purkayastha, S., Zhang, G. and Cai, D. (2011). Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-beta and NF-kappa B. Nat. Med. 17 883-887.
[42] Roca-Pardiñas, J., Cadarso-Suárez, C., Tahoces, P. G. and Lado, M. J. (2008). Assessing continuous bivariate effects among different groups through nonparametric regression models: An application to breast cancer detection. Comput. Statist. Data Anal. 52 1958-1970. · Zbl 1452.62548
[43] Ruppert, D., Wand, M. P. and Carroll, R. J. (2003). Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics 12 . Cambridge Univ. Press, Cambridge. · Zbl 1038.62042
[44] Sain, S. R., Jagtap, S., Mearns, L. and Nychka, D. (2006). A multivariate spatial model for soil water profiles. J. Agric. Biol. Environ. Stat. 11 462-480.
[45] Self, S. G. and Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J. Amer. Statist. Assoc. 82 605-610. · Zbl 0639.62020 · doi:10.2307/2289471
[46] Shankar, R. R., Eckert, G. J., Saha, C., Tu, W. and Pratt, J. H. (2005). The change in blood pressure during pubertal growth. Journal of Clinical Endocrinology & Metabolism 90 163-167.
[47] Steinberger, J., Daniels, S. R., Eckel, R. H., Hayman, L., Lustig, R. H., McCrindle, B. and Mietus-Snyder, M. L. (2009). Progress and challenges in metabolic syndrome in children and adolescents: A scientific statement from the American Heart Association atherosclerosis, hypertension, and obesity in the young Committee of the Council on cardiovascular disease in the young; Council on cardiovascular nursing; and Council on nutrition, physical activity, and metabolism. Circulation 119 628-647.
[48] Stram, D. O. and Lee, J. W. (1994). Variance-components testing in the longitudinal mixed effects model. Biometrics 50 1171-1177. · Zbl 0826.62054 · doi:10.2307/2533455
[49] Stray-Pedersen, M., Helsing, R. M., Gibbons, L., Cormick, G., Holmen, T. L., Vik, T. and Belizán, J. M. (2009). Weight status and hypertension among adolescent girls in Argentina and Norway: Data from the ENNyS and HUNT studies. BMC Public Health 9 398.
[50] Tu, W., Eckert, G. J., Saha, C. and Pratt, J. H. (2009). Synchronization of adolescent blood pressure and pubertal somatic growth. Journal of Clinical Endocrinology & Metabolism 94 5019-5022.
[51] Tu, W., Eckert, G. J., DiMeglio, L. A., Yu, Z., Jung, J. and Pratt, J. H. (2011). Intensified effect of adiposity on blood pressure in overweight and obese children. Hypertension 58 818-824.
[52] Wahba, G. (1985). A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Ann. Statist. 13 1378-1402. · Zbl 0596.65004 · doi:10.1214/aos/1176349743
[53] Wood, S. N. (2003). Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 95-114. · Zbl 1063.62059 · doi:10.1111/1467-9868.00374
[54] Wood, S. N. (2006). Generalized Additive Models : An Introduction with \(R\) . Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1087.62082
[55] Wood, S. N. (2010). mgcv: GAMs with GCV/AIC/REML smoothness estimation and GAMMs by PQL. R package version 1.7-2.
[56] Zhang, D. and Lin, X. (2003). Hypothesis testing in semiparametric additive mixed models. Biostatistics 4 57-74. · Zbl 1139.62310 · doi:10.1093/biostatistics/4.1.57
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.