Zhang, Ting; Wu, Wei Biao Inference of time-varying regression models. (English) Zbl 1257.62049 Ann. Stat. 40, No. 3, 1376-1402 (2012). Summary: We consider parameter estimation, hypothesis testing and variable selection for partially time-varying coefficient models. Our asymptotic theory has the useful feature that it can allow dependent, nonstationary error and covariate processes. With a two-stage method, the parametric component can be estimated with a \(n^{1/2}\)-convergence rate. A simulation-assisted hypothesis testing procedure is proposed for testing significance and parameter constancy. We further propose an information criterion that can consistently select the true set of significant predictors. Our method is applied to autoregressive models with time-varying coefficients. Simulation results and a real data application are provided. Cited in 41 Documents MSC: 62G08 Nonparametric regression and quantile regression 62H15 Hypothesis testing in multivariate analysis 65C60 Computational problems in statistics (MSC2010) 62G20 Asymptotic properties of nonparametric inference 62G05 Nonparametric estimation 62G10 Nonparametric hypothesis testing Keywords:information criterion; locally stationary processes; nonparametric hypothesis testing; time-varying coefficient models; variable selection Software:fda (R) × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Abramovich, Y. I., Spencer, N. K. and Turley, M. D. E. (2007). Order estimation and discrimination between stationary and time-varying (TVAR) autoregressive models. IEEE Trans. Signal Process. 55 2861-2876. · Zbl 1391.62162 · doi:10.1109/TSP.2007.893966 [2] Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica 61 821-856. · Zbl 0795.62012 · doi:10.2307/2951764 [3] Andrews, D. W. K. and Monahan, J. C. (1992). An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator. Econometrica 60 953-966. · Zbl 0778.62103 · doi:10.2307/2951574 [4] Bickel, P. J. and Levina, E. (2008). Regularized estimation of large covariance matrices. Ann. Statist. 36 199-227. · Zbl 1132.62040 · doi:10.1214/009053607000000758 [5] Brown, R. L., Durbin, J. and Evans, J. M. (1975). Techniques for testing the constancy of regression relationships over time. J. Roy. Statist. Soc. Ser. B 37 149-192. · Zbl 0321.62063 [6] Cai, Z. (2007). Trending time-varying coefficient time series models with serially correlated errors. J. Econometrics 136 163-188. · Zbl 1418.62306 · doi:10.1016/j.jeconom.2005.08.004 [7] Cai, Z., Fan, J. and Li, R. (2000). Efficient estimation and inferences for varying-coefficient models. J. Amer. Statist. Assoc. 95 888-902. · Zbl 0999.62052 · doi:10.2307/2669472 [8] Chen, B. and Hong, Y. (2012). Testing for smooth structural changes in time series models via nonparametric regression. Econometrica 80 1157-1183. · Zbl 1274.62557 [9] Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions. Econometrica 28 591-605. · Zbl 0099.14304 · doi:10.2307/1910133 [10] Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31 377-403. · Zbl 0377.65007 · doi:10.1007/BF01404567 [11] Dahlhaus, R. (1996). On the Kullback-Leibler information divergence of locally stationary processes. Stochastic Process. Appl. 62 139-168. · Zbl 0849.60032 · doi:10.1016/0304-4149(95)00090-9 [12] Dahlhaus, R. (1997). Fitting time series models to nonstationary processes. Ann. Statist. 25 1-37. · Zbl 0871.62080 · doi:10.1214/aos/1034276620 [13] Dahlhaus, R., Neumann, M. H. and von Sachs, R. (1999). Nonlinear wavelet estimation of time-varying autoregressive processes. Bernoulli 5 873-906. · Zbl 0954.62103 · doi:10.2307/3318448 [14] Davis, R. A., Huang, D. W. and Yao, Y.-C. (1995). Testing for a change in the parameter values and order of an autoregressive model. Ann. Statist. 23 282-304. · Zbl 0822.62072 · doi:10.1214/aos/1176324468 [15] Dette, H. and Spreckelsen, I. (2004). Some comments on specification tests in nonparametric absolutely regular processes. J. Time Series Anal. 25 159-172. · Zbl 1051.62043 · doi:10.1111/j.1467-9892.2004.00343.x [16] Fan, J. and Huang, T. (2005). Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli 11 1031-1057. · Zbl 1098.62077 · doi:10.3150/bj/1137421639 [17] Fan, J., Yao, Q. and Cai, Z. (2003). Adaptive varying-coefficient linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 57-80. · Zbl 1063.62054 · doi:10.1111/1467-9868.00372 [18] Fan, J., Zhang, C. and Zhang, J. (2001). Generalized likelihood ratio statistics and Wilks phenomenon. Ann. Statist. 29 153-193. · Zbl 1029.62042 · doi:10.1214/aos/996986505 [19] Fan, J. and Zhang, W. (1999). Statistical estimation in varying coefficient models. Ann. Statist. 27 1491-1518. · Zbl 0977.62039 · doi:10.1214/aos/1017939139 [20] Fan, J. and Zhang, W. (2000). Simultaneous confidence bands and hypothesis testing in varying-coefficient models. Scand. J. Stat. 27 715-731. · Zbl 0962.62032 · doi:10.1111/1467-9469.00218 [21] Fan, Y. and Linton, O. (2003). Some higher-order theory for a consistent non-parametric model specification test. J. Statist. Plann. Inference 109 125-154. · Zbl 1008.62042 · doi:10.1016/S0378-3758(02)00307-5 [22] Gao, J. and Gijbels, I. (2008). Bandwidth selection in nonparametric kernel testing. J. Amer. Statist. Assoc. 103 1584-1594. · Zbl 1286.62043 · doi:10.1198/016214508000000968 [23] Gao, J. and Hawthorne, K. (2006). Semiparametric estimation and testing of the trend of temperature series. Econom. J. 9 332-355. · Zbl 1145.91381 · doi:10.1111/j.1368-423X.2006.00188.x [24] Gençağa, D., Kuruoğlu, E. E., Ertüzün, A. and Yildirim, S. (2008). Estimation of time-varying \(\operatornameAR\,S\alpha\,S\) processes using Gibbs sampling. Signal Processing 88 2564-2572. · Zbl 1151.94360 · doi:10.1016/j.sigpro.2008.03.021 [25] Grenier, Y. (1983). Time-dependent ARMA modelling of nonstationary signals. IEEE Trans. Acoust. Speech 31 899-911. [26] Hausman, J. A. (1978). Specification tests in econometrics. Econometrica 46 1251-1271. · Zbl 0397.62043 · doi:10.2307/1913827 [27] He, C., Teräsvirta, T. and González, A. (2009). Testing parameter constancy in stationary vector autoregressive models against continuous change. Econometric Rev. 28 225-245. · Zbl 1156.62056 · doi:10.1080/07474930802388041 [28] Hoover, D. R., Rice, J. A., Wu, C. O. and Yang, L.-P. (1998). Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika 85 809-822. · Zbl 0921.62045 · doi:10.1093/biomet/85.4.809 [29] Huang, J. Z., Wu, C. O. and Zhou, L. (2004). Polynomial spline estimation and inference for varying coefficient models with longitudinal data. Statist. Sinica 14 763-788. · Zbl 1073.62036 [30] Kulasekera, K. B. and Wang, J. (1997). Smoothing parameter selection for power optimality in testing of regression curves. J. Amer. Statist. Assoc. 92 500-511. · Zbl 0894.62047 · doi:10.2307/2965699 [31] Leybourne, S. J. and McCabe, B. P. M. (1989). On the distribution of some test statistics for coefficient constancy. Biometrika 76 169-177. · Zbl 0664.62013 · doi:10.1093/biomet/76.1.169 [32] Lin, C. F. J. and Teräsvirta, T. (1994). Testing the constancy of regression parameters against continuous structural change. J. Econometrics 62 211-228. · Zbl 0796.62054 · doi:10.1016/0304-4076(94)90022-1 [33] Lin, D. Y. and Ying, Z. (2001). Semiparametric and nonparametric regression analysis of longitudinal data. J. Amer. Statist. Assoc. 96 103-126. · Zbl 1015.62038 · doi:10.1198/016214501750333018 [34] Liu, W. and Wu, W. B. (2010). Asymptotics of spectral density estimates. Econometric Theory 26 1218-1245. · Zbl 1294.62077 · doi:10.1017/S026646660999051X [35] Liu, W., Xiao, H. and Wu, W. B. (2012). Probability and moment inequalities under dependence. Working paper. · Zbl 1534.60027 [36] Lumley, T. and Heagerty, P. (1999). Weighted empirical adaptive variance estimators for correlated data regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 459-477. · Zbl 0914.62052 · doi:10.1111/1467-9868.00187 [37] Moulines, E., Priouret, P. and Roueff, F. (2005). On recursive estimation for time varying autoregressive processes. Ann. Statist. 33 2610-2654. · Zbl 1084.62089 · doi:10.1214/009053605000000624 [38] Nabeya, S. and Tanaka, K. (1988). Asymptotic theory of a test for the constancy of regression coefficients against the random walk alternative. Ann. Statist. 16 218-235. · Zbl 0662.62098 · doi:10.1214/aos/1176350701 [39] Newey, W. K. and West, K. D. (1987). A simple, positive semidefinite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55 703-708. · Zbl 0658.62139 · doi:10.2307/1913610 [40] Nyblom, J. (1989). Testing for the constancy of parameters over time. J. Amer. Statist. Assoc. 84 223-230. · Zbl 0677.62018 · doi:10.2307/2289867 [41] Orbe, S., Ferreira, E. and Rodriguez-Poo, J. (2005). Nonparametric estimation of time varying parameters under shape restrictions. J. Econometrics 126 53-77. · Zbl 1334.62064 · doi:10.1016/j.jeconom.2004.02.006 [42] Ploberger, W., Krämer, W. and Kontrus, K. (1989). A new test for structural stability in the linear regression model. J. Econometrics 40 307-318. · Zbl 0668.62045 · doi:10.1016/0304-4076(89)90087-0 [43] Rajan, J. J., Rayner, P. J. W. and Godsill, S. J. (1997). Bayesian approach to parameter estimation and interpolation of time-varying autoregressive processes using the Gibbs sampler. IEE P-Vis. Image Sign. 144 249-256. [44] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis , 2nd ed. Springer, New York. · Zbl 1079.62006 [45] Robinson, P. M. (1989). Nonparametric estimation of time-varying parameters. In Statistical Analysis and Forecasting of Economic Structural Change (P. Hackl, ed.) 253-264. Springer, Berlin. [46] Robinson, P. M. (1991). Time-varying nonlinear regression. In Economic Structure Change Analysis and Forecasting (P. Hackl and A. H. Westland, eds.) 179-190. Springer, Berlin. [47] Subba Rao, T. (1970). The fitting of non-stationary time-series models with time-dependent parameters. J. Roy. Statist. Soc. Ser. B 32 312-322. · Zbl 0225.62109 [48] Wang, L. (2008). Nonparametric test for checking lack of fit of the quantile regression model under random censoring. Canad. J. Statist. 36 321-336. · Zbl 1144.62032 · doi:10.1002/cjs.5550360209 [49] Wang, Y. D. (1998). Smoothing spline models with correlated random errors. J. Amer. Statist. Assoc. 93 341-348. · Zbl 1068.62512 · doi:10.2307/2669630 [50] Wu, W. B. and Pourahmadi, M. (2009). Banding sample autocovariance matrices of stationary processes. Statist. Sinica 19 1755-1768. · Zbl 1176.62083 [51] Xia, Y., Zhang, W. and Tong, H. (2004). Efficient estimation for semivarying-coefficient models. Biometrika 91 661-681. · Zbl 1108.62019 · doi:10.1093/biomet/91.3.661 [52] Zeger, S. L. and Diggle, P. J. (1994). Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. Biometrics 50 689-699. · Zbl 0821.62093 · doi:10.2307/2532783 [53] Zhang, C. and Dette, H. (2004). A power comparison between nonparametric regression tests. Statist. Probab. Lett. 66 289-301. · Zbl 1102.62049 · doi:10.1016/j.spl.2003.11.005 [54] Zhang, T. and Wu, W. B. (2011). Testing parametric assumptions of trends of a nonstationary time series. Biometrika 98 599-614. · Zbl 1231.62166 · doi:10.1093/biomet/asr017 [55] Zhang, W., Lee, S.-Y. and Song, X. (2002). Local polynomial fitting in semivarying coefficient model. J. Multivariate Anal. 82 166-188. · Zbl 0995.62038 · doi:10.1006/jmva.2001.2012 [56] Zhou, Z. and Wu, W. B. (2010). Simultaneous inference of linear models with time varying coefficients. J. R. Stat. Soc. Ser. B Stat. Methodol. 72 513-531. · doi:10.1111/j.1467-9868.2010.00743.x This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.