×

Identifying locally optimal designs for nonlinear models: A simple extension with profound consequences. (English) Zbl 1257.62083

Summary: We extend the approach of the first author [Ann. Stat. 38, No. 4, 2499–2524 (2010; Zbl 1202.62103)] for identifying locally optimal designs for nonlinear models. Conceptually the extension is relatively simple, but the consequences in terms of applications are profound. As wel demonstrate, we can obtain results for locally optimal designs under many optimality criteria and for a larger class of models than has been done hitherto. In many cases the results lead to optimal designs with the minimal number of support points.

MSC:

62K05 Optimal statistical designs
62J12 Generalized linear models (logistic models)
60E15 Inequalities; stochastic orderings

Citations:

Zbl 1202.62103
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Demidenko, E. (2004). Mixed Models : Theory and Applications . Wiley, Hoboken, NJ. · Zbl 1055.62086
[2] Demidenko, E. (2006). The assessment of tumour response to treatment. J. Roy. Statist. Soc. Ser. C 55 365-377. · Zbl 1490.62351 · doi:10.1111/j.1467-9876.2006.00541.x
[3] Dette, H., Melas, V. B. and Wong, W. K. (2006). Locally \(D\)-optimal designs for exponential regression models. Statist. Sinica 16 789-803. · Zbl 1107.62060
[4] Dette, H. and Melas, V. B. (2011). A note on the de la Garza phenomenon for locally optimal designs. Ann. Statist. 39 1266-1281. · Zbl 1216.62113 · doi:10.1214/11-AOS875
[5] Harville, D. A. (1997). Matrix Algebra from a Statistician’s Perspective . Springer, New York. · Zbl 0881.15001
[6] Karlin, S. and Studden, W. J. (1966). Optimal experimental designs. Ann. Math. Statist. 37 783-815. · Zbl 0151.23904 · doi:10.1214/aoms/1177699361
[7] Khuri, A. I., Mukherjee, B., Sinha, B. K. and Ghosh, M. (2006). Design issues for generalized linear models: A review. Statist. Sci. 21 376-399. · Zbl 1246.62168 · doi:10.1214/088342306000000105
[8] Li, G. and Balakrishnan, N. (2011). Optimal designs for tumor regrowth models. J. Statist. Plann. Inference 141 644-654. · Zbl 1209.62174 · doi:10.1016/j.jspi.2010.07.009
[9] Pukelsheim, F. (1989). Complete class results for linear regression designs over the multidimensional cube. In Contributions to Probability and Statistics (L. J. Gleser, M. D. Perlman, S. J. Press and A. R. Sampson, eds.) 349-356. Springer, New York. · doi:10.1007/978-1-4612-3678-8_24
[10] Yang, M. (2010). On the de la Garza phenomenon. Ann. Statist. 38 2499-2524. · Zbl 1202.62103 · doi:10.1214/09-AOS787
[11] Yang, M. and Stufken, J. (2009). Support points of locally optimal designs for nonlinear models with two parameters. Ann. Statist. 37 518-541. · Zbl 1155.62053 · doi:10.1214/07-AOS560
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.