zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Eigensolution of Laplacian matrices for graph partitioning and domain decomposition: approximate algebraic method. (English) Zbl 1257.65020
Summary: Purpose: The purpose of this paper is to introduce a general equation for eigensolution. Eigenvalues and eigenvectors of graphs have many applications in combinatorial optimization and structural mechanics. Some important applications of graph products consist of nodal ordering and graph partitioning for structuring the structural matrices and finite element subdomaining, respectively. Design/methodology/approach: In the existing methods for the eigensolution of Laplacian matrices, members have been added to the model of a graph product such that for its Laplacian matrix an algebraic relation between blocks become possible. These methods are categorized as topological approaches. Here, using concepts of linear algebra a general algebraic method is developed. Findings: A new algebraic method is introduced for calculating the eigenvalues of Laplacian matrices in graph products. Originality/value: The present method provides a simple tool for calculating the eigenvalues of the Laplacian matrices without using the configurational model and merely by using the Laplacian matrices. The developed formula for calculating the eigenvalues contains approximate terms which can be managed by the analyst.

65F15Eigenvalues, eigenvectors (numerical linear algebra)
05C90Applications of graph theory
Full Text: DOI