zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Templates for convex cone problems with applications to sparse signal recovery. (English) Zbl 1257.90042
Summary: This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fields. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal first-order method. A merit of this approach is its flexibility: for example, all compressed sensing problems can be solved via this approach. These include models with objective functionals such as the total-variation norm, $\parallel Wx \parallel_1$ where $W$ is arbitrary, or a combination thereof. In addition, the paper introduces a number of technical contributions such as a novel continuation scheme and a novel approach for controlling the step size, and applies results showing that the smooth and unsmoothed problems are sometimes formally equivalent. Combined with our framework, these lead to novel, stable and computationally efficient algorithms. For instance, our general implementation is competitive with state-of-the-art methods for solving intensively studied problems such as LASSO. Further, numerical experiments show that one can solve the Dantzig selector problem, for which no efficient large-scale solvers exist, in a few hundred iterations. Finally, the paper is accompanied with a software release. This software is not a single, monolithic solver; rather, it is a suite of programs and routines designed to serve as building blocks for constructing complete algorithms.

90C05Linear programming
90C06Large-scale problems (mathematical programming)
90C25Convex programming
62J07Ridge regression; shrinkage estimators
Full Text: DOI arXiv
[1] Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process. 19(11), (2010). doi: 10.1109/TIP.2010.2076294
[2] Auslender A., Teboulle M.: Interior gradient and proximal methods for convex and conic optimization. SIAM J. Optim. 16(3), 697--725 (2006) · Zbl 1113.90118 · doi:10.1137/S1052623403427823
[3] Beck A., Teboulle M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183--202 (2009) · Zbl 1175.94009 · doi:10.1137/080716542
[4] Beck, A., Teboulle, M.: Convex Optimization in Signal Processing and Communications. Gradient-Based Algorithms with Applications in Signal Recovery Problems. Cambridge University Press (2010) · Zbl 1211.90290
[5] Becker S., Bobin J., Candès E.J.: NESTA: a fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4(1), 1--39 (2011) · Zbl 1209.90265 · doi:10.1137/090756855
[6] Becker, S., Candès, E.J., Grant, M.: Templates for first-order conic solvers user guide. Technical report (2010). Preprint. http://tfocs.stanford.edu
[7] van den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890 (2009). doi: 10.1137/080714488 . http://link.aip.org/link/SJOCE3/v31/i2/p890/s1&Agg=doi · Zbl 1193.49033
[8] Bertsekas D.P., Nedić A., Ozdaglar A.E.: Convex Analysis and Optimization. Athena Scientific, Cambridge (2003) · Zbl 1140.90001
[9] Boyd D., vandenberghe L.: Convex Optimization. Cambridge University Press, Cambridge (2004) · Zbl 1058.90049
[10] Cai J.F., Candès E.J., Shen Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20, 1956--1982 (2010) · Zbl 1201.90155 · doi:10.1137/080738970
[11] Candès, E.J., Eldar, Y.C., Needell, D.: Compressed sensing with coherent and redundant dictionaries. Tech. rep. (2010). Preprint available at http://arxiv.org/abs/1005.2613 · Zbl 1215.94026
[12] Candès E.J., Guo F.: New multiscale transforms, minimum total-variation synthesis: applications to edge-preserving image reconstruction. Signal Process. 82(11), 1519--1543 (2002) · Zbl 1009.94510 · doi:10.1016/S0165-1684(02)00300-6
[13] Candès, E.J., Plan, Y.: Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements. In: CoRR, abs/1001.0339 (2010)
[14] Candès E.J., Recht B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717--772 (2009) · Zbl 1219.90124 · doi:10.1007/s10208-009-9045-5
[15] Candès, E.J., Romberg, J.K.: Practical signal recovery from random projections. In: SPIE Conference on Computational Imaging, pp. 76--86 (2005)
[16] Candès, E.J., Romberg, J.K.: 1-magic. Technical report, Caltech (2007). http://www.acm.caltech.edu/l1magic/
[17] Candès E.J., Tao T.: The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35(6), 2313--2351 (2007) · Zbl 1139.62019 · doi:10.1214/009053606000001523
[18] Candès E.J., Tao T.: The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053--2080 (2010) · doi:10.1109/TIT.2010.2044061
[19] Candès E.J., Wakin M.B., Boyd S.P.: Enhancing sparsity by reweighted 1 minimization. J. Fourier Anal. Appl. 14(5--6), 877--905 (2008) · Zbl 1176.94014 · doi:10.1007/s00041-008-9045-x
[20] Chambolle A., Pock T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120--145 (2010) · Zbl 1255.68217 · doi:10.1007/s10851-010-0251-1
[21] Ciarlet P.G.: Introduction to Numerical Linear Algebra and Optimisation. Cambridge University Press, Cambridge (1989)
[22] Combettes P.L., Dũng D., Vũ B.C.: Dualization of signal recovery problems. Set-Valued Var. Anal. 18, 373--404 (2010) · Zbl 1229.90123 · doi:10.1007/s11228-010-0147-7
[23] Combettes P.L., Pesquet J.C.: A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Topics Signal Process. 1(4), 564--574 (2007) · doi:10.1109/JSTSP.2007.910264
[24] Combettes P.L., Wajs V.R.: Signal recovery by proximal forward-backward splitting. SIAM Multiscale Model. Simul. 4(4), 1168--1200 (2005) · Zbl 1179.94031 · doi:10.1137/050626090
[25] Donoho D.L., Tsaig Y.: Fast solution of 1 minimization problems when the solution may be sparse. IEEE Trans. Inform. Theory 54(11), 4789--4812 (2008) · Zbl 1247.94009 · doi:10.1109/TIT.2008.929958
[26] Efron B., Hastie T., Johnstone I., Tibshirani R.: Least angle regression. Ann. Stat. 32(2), 407--499 (2004) · Zbl 1091.62054 · doi:10.1214/009053604000000067
[27] Elad M., Milanfar P., Rubinstein R.: Analysis versus synthesis in signal priors. Inverse Problems 23, 947--968 (2007) · Zbl 1138.93055 · doi:10.1088/0266-5611/23/3/007
[28] Figueiredo M.A.T., Nowak R., Wright S.J.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586--597 (2007) · doi:10.1109/JSTSP.2007.910281
[29] Friedlander, M.P., Tseng, P.: Exact regularization of convex programs. SIAM J. Optim. 18(4), 1326--1350 (2007). doi: 10.1137/060675320 . http://link.aip.org/link/?SJE/18/1326/1 · Zbl 1176.90457
[30] Friedman J., Hastie T., Tibshirani R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1--22 (2010)
[31] Fukushima M., Mine H.: A generalized proximal point algorithm for certain non-convex minimization problems. Int. J. Syst. Sci. 12(8), 989--1000 (1981) · Zbl 0467.65028 · doi:10.1080/00207728108963798
[32] Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21. http://cvxr.com/cvx (2010)
[33] Gross, D.: Recovering low-rank matrices from few coefficients in any basis. In: CoRR, abs/0910.1879 (2009)
[34] Gu, M., Lim, L.H., Wu, C.J.: PARNES: a rapidly convergent algorithm for accurate recovery of sparse and approximately sparse signals. Technical report (2009). Preprint http://arxiv.org/abs/0911.0492 · Zbl 1284.65055
[35] Güler, O.: New proximal point algorithms for convex minimization. SIAM J. Optim. 2(4), 649--664 (1992). doi: 10.1137/0802032 . http://link.aip.org/link/?SJE/2/649/1 · Zbl 0778.90052
[36] Hale E.T., Yin W., Zhang Y.: Fixed-point continuation for 1-minimization: methodology and convergence. SIAM J. Optim. 19(3), 1107--1130 (2008) · Zbl 1180.65076 · doi:10.1137/070698920
[37] Hiriart-Urruty J.B., Lemaréchal C.: Convex Analysis and Minimization Algorithms, vols. I and II. Springer, Berlin (1993)
[38] James G., Radchenko P., Lv J.: DASSO: Connections Between the Dantzig Selector and Lasso. J. R. Stat. Soc. B 71, 127--142 (2009) · Zbl 1231.62129 · doi:10.1111/j.1467-9868.2008.00668.x
[39] Koh, K., Kim, S.J., Boyd, S.P.: Solver for l1-regularized least squares problems. Technical report, Stanford University. http://www.stanford.edu/$\sim$boyd/l1_ls/ (2007)
[40] Lan, G., Lu, Z., Monteiro, R.D.C.: Primal-dual first-order methods with o(1/{$\epsilon$}) iteration-complexity for cone programming. Math. Program. (2009). doi: 10.1007/s10107-008-0261-6 . http://www.springerlink.com/index/10.1007/s10107-008-0261-6 · Zbl 1208.90113
[41] Larsen, R.M.: PROPACK: Software for Large and Sparse SVD Calculations. http://soi.stanford.edu/$\sim$rmunk/PROPACK/ (2004)
[42] Liu, Y.J., Sun, D., Toh, K.C.: An implementable proximal point algorithmic framework for nuclear norm minimization. Math. Program. (2011). doi: 10.1007/s10107-010-0437-8 · Zbl 1262.90125
[43] Lorenz, D.: Constructing test instances for basis pursuit denoising. Technical report. arXiv:1103.2897 (2011)
[44] Lu, Z.: Primal-dual first-order methods for a class of cone programming. INFORMS J. Comput. Preprint http://www.math.sfu.ca/$\sim$zhaosong/ResearchPapers/pdfirst_DS_2ndrev.pdf (2009)
[45] Malgouyres F., Zeng T.: A predual proximal point algorithm solving a non negative basis pursuit denoising model. Int. J. Comput. Vis. 83(3), 294--311 (2009) · doi:10.1007/s11263-009-0227-z
[46] Mangasarian O.L., Meyer R.R.: Nonlinear perturbation of linear programs. SIAM J. Control Optim. 17, 745--752 (1979) · Zbl 0432.90047 · doi:10.1137/0317052
[47] Moreau J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273--299 (1965) · Zbl 0136.12101
[48] Mosek ApS: The MOSEK Optimization Tools Version 2.5. http://www.mosek.com (2002)
[49] Nemirovski A., Yudin D.: Problem complexity and method efficiency in optimization. Wiley-Interscience Series in Discrete Mathematics. Wiley, New York (1983)
[50] Nesterov Y.: A method for unconstrained convex minimization problem with the rate of convergence $${$\backslash$mathcal{O}(1/k2)}$$ . Doklady AN USSR (translated as Soviet Math. Docl.) 269, 543--547 (1983)
[51] Nesterov, Y.: On an approach to the construction of optimal methods of minimization of smooth convex functions. Ekonomika i Mateaticheskie Metody 24, 509--517 (1988, in Russian) · Zbl 0659.90068
[52] Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Applied Optimization, vol. 87. Kluwer, Boston (2004) · Zbl 1086.90045
[53] Nesterov Y.: Smooth minimization of non-smooth functions. Math. Program. Ser. A 103, 127--152 (2005) · Zbl 1079.90102 · doi:10.1007/s10107-004-0552-5
[54] Nesterov, Y.: Gradient methods for minimizing composite objective function. Technical report, CORE 2007/76, Université Catholique de Louvain, Louvain-la-Neuve, Belgium (2007)
[55] Osher S., Mao Y., Dong B., Yin W.: Fast linearized Bregman iteration for compressive sensing and sparse denoising. Commun. Math. Sci. 8(1), 93--111 (2010) · Zbl 1190.49040 · doi:10.4310/CMS.2010.v8.n1.a6
[56] Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970) · Zbl 0193.18401
[57] Rockafellar R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877--898 (1976) · Zbl 0358.90053 · doi:10.1137/0314056
[58] Romberg, J.K.: The Dantzig selector and generalized thresholding. In: Proceedings of IEEE Conference on Information Science and System. Princeton, New Jersey (2008)
[59] Rudin L.I., Osher S., Fatemi E.: Nonlinear total variation noise removal algorithm. Physica D 60, 259--268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[60] Saunders, M., Kim, B.: PDCO: Primal-dual interior method for convex objectives. Technical report, Stanford University. http://www.stanford.edu/group/SOL/software/pdco.html (2002)
[61] Starck J.L., Ngyuen M.K., Murtagh F.: Wavelets and curvelets for image deconvolution: a combined approach. Signal Process. 83, 2279--2283 (2003) · Zbl 1145.94329 · doi:10.1016/S0165-1684(03)00150-6
[62] Tibshirani R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58(1), 267--288 (1996) · Zbl 0850.62538
[63] Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization. (2008). http://www.math.washington.edu/$\sim$tseng/papers.html , last accessed Sept 2009
[64] Weiss P., Blanc-Féraud L., Aubert G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31, 2047--2080 (2009) · Zbl 1191.94029 · doi:10.1137/070696143
[65] Wen Z., Yin W., Goldfarb D., Zhang Y.: A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation. SIAM J. Sci. Comput. 32(4), 1832--1857 (2010) · Zbl 1215.49039 · doi:10.1137/090747695
[66] Wright, S.J.: Solving 1-regularized regression problems. In: International Conference Combinatorics and Optimization, Waterloo (2007)
[67] Wright S.J., Nowak R.D., Figueiredo M.A.T.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479--2493 (2009) · doi:10.1109/TSP.2009.2016892
[68] Yin, W.: Analysis and generalizations of the linearized Bregman method. SIAM J. Imaging Sci. 3(4), 856--877 (2010). http://dx.doi.org/10.1137/090760350 · Zbl 1211.68491
[69] Yin W., Osher S., Goldfarb D., Darbon J.: Bregman iterative algorithms for 1 minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143--168 (2008) · Zbl 1203.90153 · doi:10.1137/070703983