×

Survival analysis of a nonautonomous logistic model with stochastic perturbation. (English) Zbl 1257.92002

Summary: Taking white noise into account, a stochastic nonautonomous logistic model is proposed and investigated. Sufficient conditions for extinction, nonpersistence in the mean, weak persistence, stochastic permanence, and global asymptotic stability are established. Moreover, the threshold between weak persistence and extinction is obtained. Finally, we introduce some numerical simulink graphics to illustrate our main results.

MSC:

92B05 General biology and biomathematics
60H30 Applications of stochastic analysis (to PDEs, etc.)
65C20 Probabilistic models, generic numerical methods in probability and statistics

Keywords:

Simulink
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. M. May, Stability and Complexity in Model Ecosystems, Princeton University, 1973.
[2] H. I. Freedman and J. H. Wu, “Periodic solutions of single-species models with periodic delay,” SIAM Journal on Mathematical Analysis, vol. 23, no. 3, pp. 689-701, 1992. · Zbl 0764.92016 · doi:10.1137/0523035
[3] K. Golpalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992. · Zbl 0752.34039
[4] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, vol. 191, Academic Press, Boston, Mass, USA, 1993. · Zbl 0777.34002
[5] B. Lisena, “Global attractivity in nonautonomous logistic equations with delay,” Nonlinear Analysis, vol. 9, no. 1, pp. 53-63, 2008. · Zbl 1139.34052 · doi:10.1016/j.nonrwa.2006.09.002
[6] T. C. Gard, “Persistence in stochastic food web models,” Bulletin of Mathematical Biology, vol. 46, no. 3, pp. 357-370, 1984. · Zbl 0533.92028 · doi:10.1007/BF02462011
[7] T. C. Gard, “Stability for multispecies population models in random environments,” Nonlinear Analysis A, vol. 10, no. 12, pp. 1411-1419, 1986. · Zbl 0598.92017 · doi:10.1016/0362-546X(86)90111-2
[8] M. Bandyopadhyay and J. Chattopadhyay, “Ratio-dependent predator-prey model: effect of environmental fluctuation and stability,” Nonlinearity, vol. 18, no. 2, pp. 913-936, 2005. · Zbl 1078.34035 · doi:10.1088/0951-7715/18/2/022
[9] X. Mao, “Stochastic versions of the LaSalle theorem,” Journal of Differential Equations, vol. 153, no. 1, pp. 175-195, 1999. · Zbl 0921.34057 · doi:10.1006/jdeq.1998.3552
[10] R. M. May, Stability and Complexity in Model Ecosystems, Princeton University, 1973.
[11] T. C. Gard, Introduction to Stochastic Differential Equations, vol. 114, Marcel Dekker, New York, NY, USA, 1988. · Zbl 0628.60064
[12] X. Mao, C. Yuan, and J. Zou, “Stochastic differential delay equations of population dynamics,” Journal of Mathematical Analysis and Applications, vol. 304, no. 1, pp. 296-320, 2005. · Zbl 1062.92055 · doi:10.1016/j.jmaa.2004.09.027
[13] D. Jiang, C. Ji, N. Shi, and J. Yu, “The long time behavior of DI SIR epidemic model with stochastic perturbation,” Journal of Mathematical Analysis and Applications, vol. 372, no. 1, pp. 162-180, 2010. · Zbl 1194.92053 · doi:10.1016/j.jmaa.2010.06.003
[14] L. Huaping and M. Zhien, “The threshold of survival for system of two species in a polluted environment,” Journal of Mathematical Biology, vol. 30, no. 1, pp. 49-61, 1991. · Zbl 0745.92028 · doi:10.1007/BF00168006
[15] T. G. Hallam and Z. E. Ma, “Persistence in population models with demographic fluctuations,” Journal of Mathematical Biology, vol. 24, no. 3, pp. 327-339, 1986. · Zbl 0606.92022 · doi:10.1007/BF00275641
[16] W. Wang and Z. Ma, “Permanence of a nonautonomous population model,” Acta Mathematicae Applicatae Sinica, vol. 14, no. 1, pp. 86-95, 1998. · Zbl 0940.92020 · doi:10.1007/BF02677353
[17] M. Liu and K. Wang, “Persistence and extinction of a stochastic single-specie model under regime switching in a polluted environment,” Journal of Theoretical Biology, vol. 264, pp. 934-944, 2010.
[18] M. Liu and K. Wang, “Persistence and extinction in stochastic non-autonomous logistic systems,” Journal of Mathematical Analysis and Applications, vol. 375, no. 2, pp. 443-457, 2011. · Zbl 1214.34045 · doi:10.1016/j.jmaa.2010.09.058
[19] D. Jiang, N. Shi, and X. Li, “Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation,” Journal of Mathematical Analysis and Applications, vol. 340, no. 1, pp. 588-597, 2008. · Zbl 1140.60032 · doi:10.1016/j.jmaa.2007.08.014
[20] X. Mao, G. Marion, and E. Renshaw, “Environmental Brownian noise suppresses explosions in population dynamics,” Stochastic Processes and their Applications, vol. 97, no. 1, pp. 95-110, 2002. · Zbl 1058.60046 · doi:10.1016/S0304-4149(01)00126-0
[21] X. Mao, “A note on the LaSalle-type theorems for stochastic differential delay equations,” Journal of Mathematical Analysis and Applications, vol. 268, no. 1, pp. 125-142, 2002. · Zbl 0996.60064 · doi:10.1006/jmaa.2001.7803
[22] X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing, Chichester, UK, 1997. · Zbl 0892.60057
[23] R. Z. Khasminskii, Stochastic Stability of Differential Equations, vol. 7, Sijthoff & Noordhoff, The Hague, The Netherlands, 1980. · Zbl 1259.60058
[24] D. J. Higham, “An algorithmic introduction to numerical simulation of stochastic differential equations,” SIAM Review, vol. 43, no. 3, pp. 525-546, 2001. · Zbl 0979.65007 · doi:10.1137/S0036144500378302
[25] Q. Luo and X. Mao, “Stochastic population dynamics under regime switching,” Journal of Mathematical Analysis and Applications, vol. 334, no. 1, pp. 69-84, 2007. · Zbl 1113.92052 · doi:10.1016/j.jmaa.2006.12.032
[26] C. Zhu and G. Yin, “On competitive Lotka-Volterra model in random environments,” Journal of Mathematical Analysis and Applications, vol. 357, no. 1, pp. 154-170, 2009. · Zbl 1182.34078 · doi:10.1016/j.jmaa.2009.03.066
[27] X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, London, UK, 2006. · Zbl 1126.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.