zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pattern formation in a cross-diffusive Holling-Tanner model. (English) Zbl 1257.92012
Summary: We present a theoretical analysis of the processes of pattern formation that involves organisms distributions and their interactions of spatially distributed populations with self- as well as cross-diffusion in a Holling-Tanner predator-prey model; sufficient conditions for the Turing instability with zero-flux boundary conditions are obtained; and Hopf and Turing bifurcations in a spatial domain are presented, too. Furthermore, we present novel numerical evidence of time evolution of patterns controlled by self- as well as cross-diffusion in the model, and find that the model dynamics exhibit a cross-diffusion controlled formation growth not only to spots, but also to strips, holes, and stripes-spots replications. The methods and results in the present paper may be useful for the research of pattern formations in the cross-diffusive models.

92C15Developmental biology, pattern formation
34C23Bifurcation (ODE)
Full Text: DOI
[1] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley, Chichester, UK, 2003. · Zbl 1087.92058 · doi:10.1002/0470871296
[2] B. E. Kendall, “Nonlinear dynamics and chaos,” in Encyclopedia of Life Sciences, vol. 13, pp. 255-262, Nature Publishing Group, London, UK, 2001.
[3] R. M. May, “Simple mathematical models with very complicated dynamics,” Nature, vol. 261, no. 5560, pp. 459-467, 1976.
[4] V. N. Biktashev, J. Brindley, A. V. Holden, and M. A. Tsyganov, “Pursuit-evasion predator-prey waves in two spatial dimensions,” Chaos, vol. 14, no. 4, pp. 988-994, 2004. · Zbl 1080.35036 · doi:10.1063/1.1793751
[5] J. B. Shukla and S. Verma, “Effects of convective and dispersive interactions on the stability of two species,” Bulletin of Mathematical Biology, vol. 43, no. 5, pp. 593-610, 1981. · Zbl 0473.92016 · doi:10.1007/BF02462315
[6] E. H. Kerner, “Further considerations on the statistical mechanics of biological associations,” vol. 21, pp. 217-255, 1959.
[7] N. Shigesada, K. Kawasaki, and E. Teramoto, “Spatial segregation of interacting species,” Journal of Theoretical Biology, vol. 79, no. 1, pp. 83-99, 1979. · doi:10.1016/0022-5193(79)90258-3
[8] A. Turing, “The chemical basis of morphogenesis,” Philosophical Transactions of the Royal Society of London B, vol. 237, no. 1, pp. 37-72, 1952.
[9] Y. Huang and O. Diekmann, “Interspecific influence on mobility and Turing instability,” Bulletin of Mathematical Biology, vol. 65, no. 1, pp. 143-156, 2003. · doi:10.1006/bulm.2002.0328
[10] R. B. Hoyle, Pattern Formation: An Introduction to Methods, Cambridge University Press, Cambridge, UK, 2006. · Zbl 1087.00001 · doi:10.1017/CBO9780511616051
[11] J. Chattopadhyay and P. K. Tapaswi, “Effect of cross-diffusion on pattern formation-a nonlinear analysis,” Acta Applicandae Mathematicae, vol. 48, no. 1, pp. 1-12, 1997. · Zbl 0904.92011 · doi:10.1023/A:1005764514684
[12] L. Chen and A. Jüngel, “Analysis of a parabolic cross-diffusion population model without self-diffusion,” Journal of Differential Equations, vol. 224, no. 1, pp. 39-59, 2006. · Zbl 1096.35060 · doi:10.1016/j.jde.2005.08.002
[13] B. Dubey, B. Das, and J. Hussain, “A predator-prey interaction model with self and cross-diffusion,” Ecological Modelling, vol. 141, no. 1-3, pp. 67-76, 2001. · doi:10.1016/S0304-3800(01)00255-1
[14] B. Dubey, N. Kumari, and R. K. Upadhyay, “Spatiotemporal pattern formation in a diffusive predator-prey system: an analytical approach,” Journal of Applied Mathematics and Computing, vol. 31, no. 1-2, pp. 413-432, 2009. · Zbl 1181.35022 · doi:10.1007/s12190-008-0221-6
[15] M. Iida, M. Mimura, and H. Ninomiya, “Diffusion, cross-diffusion and competitive interaction,” Journal of Mathematical Biology, vol. 53, no. 4, pp. 617-641, 2006. · Zbl 1113.92064 · doi:10.1007/s00285-006-0013-2
[16] W. Ko and K. Ryu, “On a predator-prey system with cross diffusion representing the tendency of predators in the presence of prey species,” Journal of Mathematical Analysis and Applications, vol. 341, no. 2, pp. 1133-1142, 2008. · Zbl 1160.35021 · doi:10.1016/j.jmaa.2007.11.018
[17] W. Ko and K. Ryu, “On a predator-prey system with cross-diffusion representing the tendency of prey to keep away from its predators,” Applied Mathematics Letters, vol. 21, no. 11, pp. 1177-1183, 2008. · Zbl 1170.35549 · doi:10.1016/j.aml.2007.12.018
[18] K. Kuto and Y. Yamada, “Multiple coexistence states for a prey-predator system with cross-diffusion,” Journal of Differential Equations, vol. 197, no. 2, pp. 315-348, 2004. · Zbl 1205.35116 · doi:10.1016/j.jde.2003.08.003
[19] A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, vol. 14, Springer, New York, NY, USA, 2nd edition, 2001. · Zbl 1027.92022
[20] P. Y. H. Pang and M. Wang, “Strategy and stationary pattern in a three-species predator-prey model,” Journal of Differential Equations, vol. 200, no. 2, pp. 245-273, 2004. · Zbl 1106.35016 · doi:10.1016/j.jde.2004.01.004
[21] C. V. Pao, “Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion,” Nonlinear Analysis: Theory, Methods and Applications A, vol. 60, no. 7, pp. 1197-1217, 2005. · Zbl 1074.35034 · doi:10.1016/j.na.2004.10.008
[22] S. Raychaudhuri, D. K. Sinha, and J. Chattopadhyay, “Effect of time-varying cross-diffusivity in a two-species Lotka-Volterra competitive system,” Ecological Modelling, vol. 92, no. 1, pp. 55-64, 1996. · doi:10.1016/0304-3800(95)00201-4
[23] G. Q. Sun, Z. Jin, Q. X. Liu, and L. Li, “Pattern formation induced by cross-diffusion in a predator-prey system,” Chinese Physics B, vol. 17, no. 11, pp. 3936-3941, 2008. · doi:10.1088/1674-1056/17/11/003
[24] V. K. Vanag and I. R. Epstein, “Cross-diffusion and pattern formation in reaction-diffusion systems,” Physical Chemistry Chemical Physics, vol. 11, no. 6, pp. 897-912, 2009. · doi:10.1039/b813825g
[25] R. K. Upadhyay, W. Wang, and N. K. Thakur, “Spatiotemporal dynamics in a spatial plankton system,” Mathematical Modelling of Natural Phenomena, vol. 5, no. 5, pp. 102-122, 2010. · Zbl 1197.92049 · doi:10.1051/mmnp/20105507 · eudml:197652
[26] E. Sáez and E. González-Olivares, “Dynamics of a predator-prey model,” SIAM Journal on Applied Mathematics, vol. 59, no. 5, pp. 1867-1878, 1999. · Zbl 0934.92027 · doi:10.1137/S0036139997318457
[27] J. D. Murray, “Discussion: Turing’s theory of morphogenesis-its influence on modelling biological pattern and form,” Bulletin of Mathematical Biology, vol. 52, no. 1-2, pp. 119-152, 1990. · doi:10.1016/S0092-8240(05)80007-2
[28] P. A. Braza, “The bifurcation structure of the Holling-Tanner model for predator-prey interactions using two-timing,” SIAM Journal on Applied Mathematics, vol. 63, no. 3, pp. 889-904, 2003. · Zbl 1035.34043 · doi:10.1137/S0036139901393494
[29] H. Malchow, S. V. Petrovskii, and E. Venturino, Spatiotemporal Patterns in Ecology and Epidemiology-Theory, Models, and Simulation, Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2008. · Zbl 1298.92004
[30] M. R. Garvie, “Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB,” Bulletin of Mathematical Biology, vol. 69, no. 3, pp. 931-956, 2007. · Zbl 1298.92081 · doi:10.1007/s11538-006-9062-3
[31] A. Munteanu and R. V. Solé, “Pattern formation in noisy self-replicating spots,” International Journal of Bifurcation and Chaos, vol. 16, no. 12, pp. 3679-3683, 2006. · Zbl 1113.92007 · doi:10.1142/S0218127406017063
[32] M. Baurmann, T. Gross, and U. Feudel, “Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations,” Journal of Theoretical Biology, vol. 245, no. 2, pp. 220-229, 2007. · doi:10.1016/j.jtbi.2006.09.036
[33] J. von Hardenberg, E. Meron, M. Shachak, and Y. Zarmi, “Diversity of vegetation patterns and desertification,” Physical Review Letters, vol. 87, no. 19, Article ID 198101, 4 pages, 2001. · doi:10.1103/PhysRevLett.87.198101