Dahl, Mattias; Gicquaud, Romain; Humbert, Emmanuel A limit equation associated to the solvability of the vacuum Einstein constraint equations by using the conformal method. (English) Zbl 1258.53037 Duke Math. J. 161, No. 14, 2669-2697 (2012). Authors’ abstract: Let \((M,g)\) be a compact Riemannian manifold on which a trace-free and divergence-free \((0,2)\)-tensor \(\sigma\in W^{1,p}\) and a positive function \(\tau\in W^{1,p}\), \( p > n\) are fixed. In this paper, we study the vacuum Einstein constraint equations using the well-known conformal method with data \(\sigma\) and \(\tau\). We show that if no solution exists, then there is a nontrivial solution of another nonlinear limit equation on 1-forms. This last equation can be shown to be without solutions in many situations. As a corollary, we get the existence of solutions of the vacuum Einstein constraint equation under explicit assumptions which, in particular, hold on a dense set of metrics \(g\) for the \(C^{0}\)-topology. Reviewer: Anthony D. Osborne (Keele) Cited in 4 ReviewsCited in 20 Documents MSC: 53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions 35Q75 PDEs in connection with relativity and gravitational theory 53C80 Applications of global differential geometry to the sciences 83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems) 53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics PDF BibTeX XML Cite \textit{M. Dahl} et al., Duke Math. J. 161, No. 14, 2669--2697 (2012; Zbl 1258.53037) Full Text: DOI arXiv Euclid OpenURL References: [1] P. T. Allen, A. Clausen, and J. Isenberg, Near-constant mean curvature solutions of the Einstein constraint equations with non-negative Yamabe metrics , Classical Quantum Gravity 25 (2008), no. 7075009. · Zbl 1138.83004 [2] T. Aubin, Some nonlinear problems in Riemannian geometry , Springer Monogr. Math., Springer, Berlin, 1998. · Zbl 0896.53003 [3] R. Bartnik and J. Isenberg, “The constraint equations” in The Einstein Equations and the Large Scale Behavior of Gravitational Fields , Birkhäuser, Basel, 2004, 1-38. · Zbl 1073.83009 [4] R. Beig, P. T. Chruściel, and R. Schoen, KIDs are non-generic , Ann. Henri Poincaré 6 (2005), 155-194. · Zbl 1145.83306 [5] Y. Choquet-Bruhat, General relativity and the Einstein equations , Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2009. · Zbl 1157.83002 [6] Y. Choquet-Bruhat and R. Geroch, Global aspects of the Cauchy problem in general relativity , Comm. Math. Phys. 14 (1969), 329-335. · Zbl 0182.59901 [7] Y. Choquet-Bruhat and J. W. York, Jr., “The Cauchy problem” in General Relativity and Gravitation , Vol. 1, Plenum, New York, 1980, 99-172. [8] E. Delay, Smooth compactly supported solutions of some underdetermined elliptic PDE, with gluing applications , preprint, [math.FA] 1003.0535v4 · Zbl 1268.58018 [9] R. Gicquaud and A. Sakovich, A large class of non constant mean curvature solutions of the einstein constraint equations on an asymptotically hyperbolic manifold , to appear in Comm. Math. Phys., preprint, [gr-qc] 1012.2246v2 · Zbl 1247.83010 [10] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order , Classics in Math., Springer, Berlin, 2001, reprint of the 1998 edition. · Zbl 1042.35002 [11] M. J. Holst, G. Nagy, and G. Tsogtgerel, Far-from-constant mean curvature solutions of Einstein’s constraint equations with positive Yamabe metrics , Phys. Rev. Lett. 100 (2008), no. 16, art ID 161101. · Zbl 1228.83015 [12] M. J. Holst, G. Nagy, and G. Tsogtgerel, Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions , Comm. Math. Phys. 288 (2009), 547-613. · Zbl 1175.83010 [13] J. Isenberg, Constant mean curvature solutions of the Einstein constraint equations on closed manifolds , Classical Quantum Gravity 12 (1995), 2249-2274. · Zbl 0840.53056 [14] J. Isenberg and V. Moncrief, “Some results on nonconstant mean curvature solutions of the Einstein constraint equations” in Physics on Manifolds (Paris, 1992) , Math. Phys. Stud. 15 , Kluwer, Dordrecht, 1994, 295-302. · Zbl 0831.53059 [15] J. Isenberg and N. Ó Murchadha, Non-CMC conformal data sets which do not produce solutions of the Einstein constraint equations , Classical Quantum Gravity 21 (2004), S233-S241. · Zbl 1042.83007 [16] A. Lichnerowicz, L’intégration des équations de la gravitation relativiste et le problème des \(n\) corps , J. Math. Pures Appl. (9) 23 (1944), 37-63. · Zbl 0060.44410 [17] J. Lohkamp, Curvature h-principles , Ann. of Math. 142 (1995), 457-498. · Zbl 0909.58005 [18] D. Maxwell, Rough solutions of the Einstein constraint equations on compact manifolds , J. Hyperbolic Differ. Equations. 2 (2005), 521-546. · Zbl 1076.58021 [19] D. Maxwell, Rough solutions of the Einstein constraint equations , J. Reine Angew. Math. 590 (2006), 1-29. · Zbl 1088.83004 [20] D. Maxwell, A class of solutions of the vacuum Einstein constraint equations with freely specified mean curvature , Math. Res. Lett. 16 (2009), 627-645. · Zbl 1187.83022 [21] K. Yano, Integral formulas in Riemannian geometry , Pure Appl. Math. 1 , Marcel Dekker, New York, 1970. · Zbl 0213.23801 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.