Arctic circles, domino tilings and square Young tableaux. (English) Zbl 1258.60014

Author’s abstract: The arctic circle theorem of Jockusch, Propp, and Shor asserts that uniformly random domino tilings of an Aztec diamond of high order are frozen with asymptotically high probability outside the “arctic circle” inscribed within the diamond. A similar arctic circle phenomenon has been observed in the limiting behavior of random square Young tableaux. In this paper, we show that random domino tilings of the Aztec diamond are asymptotically related to random square Young tableaux in a more refined sense that looks also at the behavior inside the arctic circle. This is done by giving a new derivation of the limiting shape of the height function of a random domino tiling of the Aztec diamond that uses the large-deviation techniques developed for the square Young tableaux problem in a previous paper by Pittel and the author. The solution of the variational problem that arises for domino tilings is almost identical to the solution for the case of square Young tableaux by Pittel and the author. The analytic techniques used to solve the variational problem provide a systematic, guess-free approach for solving problems of this type which have appeared in a number of related combinatorial probability models.


60C05 Combinatorial probability
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60F10 Large deviations
05B45 Combinatorial aspects of tessellation and tiling problems
Full Text: DOI arXiv Euclid


[1] Bressoud, D. M. (1999). Proofs and Confirmations : The Story of the Alternating Sign Matrix Conjecture . Mathematical Association of America, Washington, DC. · Zbl 0944.05001
[2] Cohn, H., Elkies, N. and Propp, J. (1996). Local statistics for random domino tilings of the Aztec diamond. Duke Math. J. 85 117-166. · Zbl 0866.60018 · doi:10.1215/S0012-7094-96-08506-3
[3] Cohn, H., Kenyon, R. and Propp, J. (2001). A variational principle for domino tilings. J. Amer. Math. Soc. 14 297-346 (electronic). · Zbl 1037.82016 · doi:10.1090/S0894-0347-00-00355-6
[4] Cohn, H., Larsen, M. and Propp, J. (1998). The shape of a typical boxed plane partition. New York J. Math. 4 137-165 (electronic). · Zbl 0908.60083
[5] Colomo, F. and Pronko, A. G. (2010). The limit shape of large alternating sign matrices. SIAM J. Disc. Math. 24 1558-1571. · Zbl 1223.82011 · doi:10.1137/080730639
[6] Elkies, N., Kuperberg, G., Larsen, M. and Propp, J. (1992). Alternating sign matrices and domino tilings. J. Algebraic Combin. 1 111-132; 219-234. · Zbl 0788.05017 · doi:10.1023/A:1022483817303
[7] Estrada, R. and Kanwal, R. P. (2000). Singular Integral Equations . Birkhäuser, Boston, MA. · Zbl 0945.45001
[8] Finch, S. R. (2003). Mathematical Constants. Encyclopedia of Mathematics and Its Applications 94 . Cambridge Univ. Press, Cambridge. · Zbl 1054.00001
[9] Fischer, I. (2006). The number of monotone triangles with prescribed bottom row. Adv. in Appl. Math. 37 249-267. · Zbl 1114.05006 · doi:10.1016/j.aam.2005.03.009
[10] Fischer, I. (2007). A new proof of the refined alternating sign matrix theorem. J. Combin. Theory Ser. A 114 253-264. · Zbl 1110.05017 · doi:10.1016/j.jcta.2006.04.004
[12] Fischer, I. (2010). The operator formula for monotone triangles-simplified proof and three generalizations. J. Combin. Theory Ser. A 117 1143-1157. · Zbl 1206.05014 · doi:10.1016/j.jcta.2010.03.019
[13] Fischer, I. (2011). Refined enumerations of alternating sign matrices: Monotone ( d , m )-trapezoids with prescribed top and bottom rows. J. Algebraic Combin. 33 239-257. · Zbl 1229.05019 · doi:10.1007/s10801-010-0243-7
[14] Fischer, I. and Romik, D. (2009). More refined enumerations of alternating sign matrices. Adv. Math. 222 2004-2035. · Zbl 1188.05008 · doi:10.1016/j.aim.2009.07.003
[15] Gradshteyn, I. S. and Ryzhik, I. M. (2000). Table of Integrals , Series , and Products , 6th ed. Academic Press, San Diego, CA. · Zbl 0981.65001
[16] Jockusch, W., Propp, J. and Shor, P. (1995). Random domino tilings and the arctic circle theorem. Unpublished manuscript. Available at .
[17] Johansson, K. (2001). Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. of Math. (2) 153 259-296. · Zbl 0984.15020 · doi:10.2307/2661375
[18] Johansson, K. (2002). Non-intersecting paths, random tilings and random matrices. Probab. Theory Related Fields 123 225-280. · Zbl 1008.60019 · doi:10.1007/s004400100187
[19] Johansson, K. (2005). The arctic circle boundary and the Airy process. Ann. Probab. 33 1-30. · Zbl 1096.60039 · doi:10.1214/009117904000000937
[20] Kasteleyn, P. W. (1961). The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice. Physica 27 1209-1225. · Zbl 1244.82014
[21] Kenyon, R. and Okounkov, A. (2007). Limit shapes and the complex Burgers equation. Acta Math. 199 263-302. · Zbl 1156.14029 · doi:10.1007/s11511-007-0021-0
[22] Kenyon, R., Okounkov, A. and Sheffield, S. (2006). Dimers and amoebae. Ann. of Math. (2) 163 1019-1056. · Zbl 1154.82007 · doi:10.4007/annals.2006.163.1019
[23] Logan, B. F. and Shepp, L. A. (1977). A variational problem for random Young tableaux. Adv. Math. 26 206-222. · Zbl 0363.62068 · doi:10.1016/0001-8708(77)90030-5
[24] Mills, W. H., Robbins, D. P. and Rumsey, H. Jr. (1983). Alternating sign matrices and descending plane partitions. J. Combin. Theory Ser. A 34 340-359. · Zbl 0516.05016 · doi:10.1016/0097-3165(83)90068-7
[25] Petersen, T. K. and Speyer, D. (2005). An arctic circle theorem for Groves. J. Combin. Theory Ser. A 111 137-164. · Zbl 1066.05018 · doi:10.1016/j.jcta.2004.11.013
[26] Pittel, B. and Romik, D. (2007). Limit shapes for random square Young tableaux. Adv. in Appl. Math. 38 164-209. · Zbl 1122.60009 · doi:10.1016/j.aam.2005.12.005
[27] Porter, D. and Stirling, D. S. G. (1990). Integral Equations . Cambridge Univ. Press, Cambridge. · Zbl 0714.45001
[28] Propp, J. (2001). The many faces of alternating-sign matrices. In Discrete Models : Combinatorics , Computation , and Geometry ( Paris , 2001). Discrete Math. Theor. Comput. Sci. Proc. AA 43-58 (electronic). Maison Inform. Math. Discrèt. (MIMD), Paris. · Zbl 0990.05020
[29] Robbins, D. P. and Rumsey, H. Jr. (1986). Determinants and alternating sign matrices. Adv. Math. 62 169-184. · Zbl 0611.15008 · doi:10.1016/0001-8708(86)90099-X
[30] Temperley, H. N. V. and Fisher, M. E. (1961). Dimer problem in statistical mechanics-an exact result. Philos. Mag. (8) 6 1061-1063. · Zbl 0126.25102 · doi:10.1080/14786436108243366
[31] Valkó, B. (2006). Private communication.
[32] Vershik, A. M. and Kerov, S. V. (1977). Asymptotics of the Plancherel measure of the symmetric group and the limiting shape of Young tableaux. Soviet Math. Dokl. 18 527-531. · Zbl 0406.05008
[33] Vershik, A. M. and Kerov, S. V. (1985). Asymptotic of the largest and typical dimensions of irreducible representations of the symmetric group. Funktsional. Anal. i Prilozhen . 19 25-36, 96. · Zbl 0592.20015 · doi:10.1007/BF01086021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.