zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Finite difference schemes for variable-order time fractional diffusion equation. (English) Zbl 1258.65079
Summary: Variable-order fractional diffusion equation model is a recently developed and promising approach to characterize time-dependent or concentration-dependent anomalous diffusion, or diffusion process in inhomogeneous porous media. To further study the properties of variable-order time fractional subdiffusion equation models, the efficient numerical schemes are urgently needed. This paper investigates numerical schemes for variable-order time fractional diffusion equations in a finite domain. Three finite difference schemes including the explicit scheme, the implicit scheme and the Crank-Nicholson scheme are studied. Stability conditions for these three schemes are provided and proved via the Fourier method, rigorous convergence analysis is also performed. Two numerical examples are offered to verify the theoretical analysis of the above three schemes and illustrate the effectiveness of suggested schemes. The numerical results illustrate that, the implicit scheme and the Crank-Nicholson scheme can achieve high accuracy compared with the explicit scheme, and the Crank-Nicholson scheme claims highest accuracy in most situations. Moreover, some properties of variable-order time fractional diffusion equation model are also shown by numerical simulations.

65M06Finite difference methods (IVP of PDE)
35R11Fractional partial differential equations
Full Text: DOI