×

zbMATH — the first resource for mathematics

Monodromy at infinity and Fourier transform. II. (English) Zbl 1259.14008
Summary: For a regular twistor \(D\)-module and for a given function \(f\), we compare the nearby cycles at \(f = \infty\) and the nearby or vanishing cycles at \(\tau = 0\) for its partial Fourier-Laplace transform relative to the kernel \(e^{-\tau f}\).
Part I see Publ. Res. Inst. Math. Sci. 33, No. 4, 643–685 (1997; Zbl 0920.14003).

MSC:
14D07 Variation of Hodge structures (algebro-geometric aspects)
32S40 Monodromy; relations with differential equations and \(D\)-modules (complex-analytic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Sabbah, C., Monodromy at infinity and Fourier transform, Publ. RIMS, Kyoto Univ., 33 (1997), 643-685. · Zbl 0920.14003
[2] , Fourier-Laplace transform of irreducible regular differential systems on the Rie- mann sphere, Russian Math. Surveys, 59 (2004), 1165-1180, arXiv: math.AG/0408294. · Zbl 1084.32021
[3] , Fourier-Laplace transform of a variation of polarized complex Hodge structure, arXiv: math.AG/0508551, 36 pages, 2005. i i i i i i i Monodromy at Infinity II 835
[4] Sabbah, C., Polarizable twistor D-modules, Astérisque, No. 300, Société Mathématique de France, Paris, 2005.
[5] , Polarizable twistor D-modules, prépublication, arXiv: math.AG/0503038, vi+226 pages, 2005.
[6] Saito, M., Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ., 24 (1988), 849-995. · Zbl 0691.14007
[7] Simpson, C., Mixed twistor structures, Prépublication Université de Toulouse & arXiv: math.AG/9705006, 1997.
[8] Watson, G. N., A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1922. i i i i · JFM 48.0412.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.