×

zbMATH — the first resource for mathematics

On nonfinitely based varieties of groups of large prime exponent. (English) Zbl 1259.20034
Author’s summary: For every sufficiently large odd \(p\), we present a continual set of nonfinitely based varieties of groups of exponent \(p\). The properties of these varieties make it possible to answer some open questions on varieties of groups.

MSC:
20E10 Quasivarieties and varieties of groups
20F50 Periodic groups; locally finite groups
08B15 Lattices of varieties
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adian S. I., Izv. Akad. Nauk SSSR Ser. Mat. 34 (4) pp 715– (1970)
[2] Bryant R. M., J. Austral. Math. Soc. 16 pp 29– (1973) · Zbl 0272.20019 · doi:10.1017/S1446788700013914
[3] Ivanov S. V., Applications of Graded Diagrams in Combinatorial Group Theory (1991) · Zbl 0732.20018
[4] Ivanov S. V., Contemp. Math. 360 pp 55– (2004) · doi:10.1090/conm/360/06570
[5] Kleiman Yu. G., Izv. Akad. Nauk SSSR Ser. Mat. 38 (3) pp 475– (1973)
[6] Kourovka Notebook: Unsolved Problems in Group Theory.( 2010 ). 17th ed. (Eds. V. D. Mazurov and E. l. Khukhro.) Russian Academy of Sciences, Siberian Division, Institute of Mathematics. Novosibirsk .
[7] Kozhevnikov P. A., Comm. Alg. 30 (9) pp 4331– (2002) · Zbl 1015.20024 · doi:10.1081/AGB-120013321
[8] Lallement G., Semigroups and Combinatorial Applications (1979)
[9] Neumann H., Varieties of Groups (1967) · Zbl 0149.26704 · doi:10.1007/978-3-642-88599-0
[10] Ol’shanskii A. Yu., Izv. Akad. Nauk SSSR Ser. Mat. 34 (2) pp 376– (1970)
[11] Ol’shanskii A. Yu., Mat. sbornik 126 pp 59– (1985)
[12] Sch├╝tzenberge M. P., C. R. Acad. Sci. Paris 248 pp 2435– (1959)
[13] Storozhev A. M., Comm. Alg. 22 (7) pp 2677– (1994) · Zbl 0813.20028 · doi:10.1080/00927879408824986
[14] The Sverdlovsk notebook: Unsolved problems of semigroup theory ( 1979 ). (Eds. V. A. Baranski, M. V. Volkov, E. A. Golubov, L. N. Shevrin.) Sverdlovsk: Ural State University .
[15] Vaughan-Lee M. R., Bull. London Math. Soc. 2 pp 280– (1970) · Zbl 0216.08401 · doi:10.1112/blms/2.3.280
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.