×

Weak nonmild solutions to some SPDEs. (English) Zbl 1259.60067

Summary: We study the nonlinear stochastic heat equation driven by space-time white noise in the case where the initial datum \(u_{0}\) is a (possibly signed) measure. In this case, one cannot obtain a mild random-field solution in the usual sense. We prove instead that it is possible to establish the existence and uniqueness of a weak solution with values in a suitable function space. Our approach is based on a construction of a generalized stochastic convolution via Young-type inequalities.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations
PDF BibTeX XML Cite
Full Text: arXiv Euclid

References:

[1] L. Bertini and N. Cancrini, The stochastic heat equation: Feynman-Kac formula and intermittence , J. Statist. Physics 78 (1994), 1377-1402. · Zbl 1080.60508
[2] D. L. Burkholder, Martingale transforms , Ann. Math. Statist. 37 (1966), 1494-1504. · Zbl 0306.60030
[3] D. L. Burkholder, B. J. Davis and R. F. Gundy, Integral inequalities for convex functions of operators on martingales , Proceedings of the sixth Berkeley symposium on mathematical statistics and probability, vol. II, University of California Press, Berkeley, CA, 1972, pp. 223-240. · Zbl 0253.60056
[4] D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales , Acta Math. 124 (1970), 249-304. · Zbl 0223.60021
[5] E. M. Cabaña, The vibrating string forced by white noise , Z. Wahrsch. Verw. Gebiete 15 (1970), 111-130. · Zbl 0193.45101
[6] E. Carlen and P. Kree, \(L^p\) estimates for multiple stochastic integrals , Ann. Probab. 19 (1991), 354-368. · Zbl 0721.60052
[7] R. A. Carmona and S. A. Molchanov, Parabolic Anderson problem and intermittency , Mem. Amer. Math. Soc., vol. 108, Amer. Math. Soc., Providence, RI, 1994. · Zbl 0925.35074
[8] R. A. Carmona and D. Nualart, Random nonlinear wave equations: Propagation of singularities , Ann. Probab. 16 (1988), 730-751. · Zbl 0643.60045
[9] D. Conus and R. C. Dalang, The nonlinear stochastic wave equation in high dimensions , Electron. J. Probab. 13 (2008), 629-670. · Zbl 1187.60049
[10] D. Conus and D. Khoshnevisan, On the existence and position of the farthest peaks of a family of parabolic and hyperbolic SPDE’s , to appear in Probab. Theory Related Fields (2012). · Zbl 1251.60051
[11] R. C. Dalang, Extending martingale measure stochastic integral with applications to spatially homogeneous SPDE’s , Electron. J. Probab. 4 (1999), 1-29. · Zbl 0986.60053
[12] R. C. Dalang and C. Mueller, Some nonlinear S.P.D.E.’s that are second order in time , Electron. J. Probab. 8 (2003), 1-21 (electronic). · Zbl 1013.60044
[13] R. C. Dalang, The stochastic wave equation , A minicourse on stochastic partial differential equations, Lecture Notes in Mathematics, vol. 1962, Springer, Berlin, 2009, pp. 39-71. · Zbl 1165.60023
[14] B. Davis, On the \(L^p\) norms of stochastic integrals and other martingales , Duke Math. J. 43 (1976), 697-704. · Zbl 0349.60061
[15] M. Foondun, D. Khoshnevisan and E. Nualart, A local-time correspondence for stochastic partial differential equations , Trans. Amer. Math. Soc. 363 (2011), 2481-2515. · Zbl 1225.60103
[16] I. Gyöngy and D. Nualart, On the stochastic Burgers’ equation in the real line , Ann. Probab. 27 (1999), 782-802. · Zbl 0939.60058
[17] C. Mueller, Singular initial conditions for the heat equation with noise , Ann. Probab. 24 (1996), 377-398. · Zbl 0854.60057
[18] D. Nualart and L. Quer-Sardanyons, Existence and smoothness of the density for spatially homogeneous SPDEs , Potential Anal. 27 (2007), 281-299. · Zbl 1133.60029
[19] S. Peszat, The Cauchy problem for a nonlinear stochastic wave equation in any dimension , J. Evol. Equ. 2 (2002), 383-394. · Zbl 1375.60109
[20] S. Peszat and J. Zabczyk, Nonlinear stochastic wave and heat equations , Probab. Theory Related Fields 116 (2000), 421-443. · Zbl 0959.60044
[21] J. B. Walsh, An Introduction to Stochastic Partial Differential Equations , Ecole d’Etè de Probabilités de St-Flour, XIV, 1984, Lecture Notes in Mathematics, vol. 1180, Springer-Verlag, Berlin, 1986, pp. 265-439. · Zbl 0608.60060
[22] J. B. Walsh, On numerical solutions of the stochastic wave equation , Illinois J. Math. 50 (2006), 991-1018. · Zbl 1108.60058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.