×

Quenched asymptotics for Brownian motion of renormalized Poisson potential and for the related parabolic Anderson models. (English) Zbl 1259.60094

Author’s abstract: Let \(B_s\) be a \(d\)-dimensional Brownian motion and \(\omega(dx)\) be an independent Poisson field on \(\mathbb{R}^d\). The almost sure asymptotics for the logarithmic moment generating function \[ \log\operatorname{E}_0\exp\left\{\pm\theta\int_0^t \overline V(B_s)ds\right\}\qquad (t\to\infty) \] are investigated in connection with the renormalized Poisson potential of the form \[ \overline V(x)=\int_{\mathbb{R}^d}\frac{1}{|y-x|^p}[\omega(dy)-dy],\qquad x\in\mathbb{R}^d. \] The investigation is motivated by some practical problems arising from the models of Brownian motion in random media and from the parabolic Anderson models.

MSC:

60J65 Brownian motion
60K37 Processes in random environments
60K40 Other physical applications of random processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60F10 Large deviations

References:

[1] Bass, R., Chen, X. and Rosen, J. (2009). Large deviations for Riesz potentials of additive processes. Ann. Inst. Henri Poincaré Probab. Stat. 45 626-666. · Zbl 1181.60035 · doi:10.1214/08-AIHP181
[2] Biskup, M. and König, W. (2001). Long-time tails in the parabolic Anderson model with bounded potential. Ann. Probab. 29 636-682. · Zbl 1018.60093 · doi:10.1214/aop/1008956688
[3] Cadel, A., Tindel, S. and Viens, F. (2008). Sharp asymptotics for the partition function of some continuous-time directed polymers. Potential Anal. 29 139-166. · Zbl 1214.82133 · doi:10.1007/s11118-008-9092-6
[4] Carmona, R., Viens, F. G. and Molchanov, S. A. (1996). Sharp upper bound on the almost-sure exponential behavior of a stochastic parabolic partial differential equation. Random Oper. Stoch. Equ. 4 43-49. · Zbl 0849.60062 · doi:10.1515/rose.1996.4.1.43
[5] Carmona, R. A. and Molchanov, S. A. (1994). Parabolic Anderson Problem and Intermittency. Mem. Amer. Math. Soc. 108 . Amer. Math. Soc., Providence, RI. · Zbl 0925.35074
[6] Carmona, R. A. and Molchanov, S. A. (1995). Stationary parabolic Anderson model and intermittency. Probab. Theory Related Fields 102 433-453. · Zbl 0827.60051 · doi:10.1007/BF01198845
[7] Carmona, R. A. and Viens, F. G. (1998). Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter. Stoch. Stoch. Rep. 62 251-273. · Zbl 0908.60062
[8] Chen, X. (2010). Random Walk Intersections : Large Deviations and Related Topics. Math. Surveys Monogr. 157 . Amer. Math. Soc., Providence, RI.
[9] Chen, X. and Kulik, A. M. (2010). Brownian motion and parabolic Anderson model in a renormalized Poisson potential. Ann. Inst. Henri Poincaré . · Zbl 1279.60106
[10] Chen, X. and Rosinski, J. (2011). Spatial Brownian motion in renormalized Poisson potential: A critical case.
[11] Cranston, M., Mountford, T. S. and Shiga, T. (2005). Lyapunov exponent for the parabolic Anderson model with Lévy noise. Probab. Theory Related Fields 132 321-355. · Zbl 1082.60057 · doi:10.1007/s00440-004-0346-y
[12] Dalang, R. C. and Mueller, C. (2009). Intermittency properties in a hyperbolic Anderson problem. Ann. Inst. Henri Poincaré Probab. Stat. 45 1150-1164. · Zbl 1196.60116 · doi:10.1214/08-AIHP199
[13] Engländer, J. (2008). Quenched law of large numbers for branching Brownian motion in a random medium. Ann. Inst. Henri Poincaré Probab. Stat. 44 490-518. · Zbl 1181.60152 · doi:10.1214/07-AIHP155
[14] Florescu, I. and Viens, F. (2006). Sharp estimation of the almost-sure Lyapunov exponent for the Anderson model in continuous space. Probab. Theory Related Fields 135 603-644. · Zbl 1105.60042 · doi:10.1007/s00440-005-0471-2
[15] Fukushima, R. (2010). Second order asymptotics for Brownian motion among a heavy tailed Poissonian potential.
[16] Gärtner, J. and König, W. (2000). Moment asymptotics for the continuous parabolic Anderson model. Ann. Appl. Probab. 10 192-217. · Zbl 1171.60359 · doi:10.1214/aoap/1019737669
[17] Gärtner, J., König, W. and Molchanov, S. A. (2000). Almost sure asymptotics for the continuous parabolic Anderson model. Probab. Theory Related Fields 118 547-573. · Zbl 0972.60056 · doi:10.1007/s004400000096
[18] Gärtner, J. and Molchanov, S. A. (1990). Parabolic problems for the Anderson model. I. Intermittency and related topics. Comm. Math. Phys. 132 613-655. · Zbl 0711.60055 · doi:10.1007/BF02156540
[19] Gärtner, J. and Molchanov, S. A. (1998). Parabolic problems for the Anderson model. II. Second-order asymptotics and structure of high peaks. Probab. Theory Related Fields 111 17-55. · Zbl 0909.60040 · doi:10.1007/s004400050161
[20] Harvlin, S. and Avraham, B. (1987). Diffusion in disordered media. Adv. in Phys. 36 695-798.
[21] Komorowski, T. (2000). Brownian motion in a Poisson obstacle field. Astérisque 266 91-111. · Zbl 0964.60091
[22] Sznitman, A.-S. (1993). Brownian asymptotics in a Poissonian environment. Probab. Theory Related Fields 95 155-174. · Zbl 0792.60100 · doi:10.1007/BF01192268
[23] Sznitman, A.-S. (1993). Brownian survival among Gibbsian traps. Ann. Probab. 21 490-508. · Zbl 0769.60104 · doi:10.1214/aop/1176989413
[24] Sznitman, A.-S. (1998). Brownian Motion , Obstacles and Random Media . Springer, Berlin. · Zbl 0973.60003
[25] van der Hofstad, R., König, W. and Mörters, P. (2006). The universality classes in the parabolic Anderson model. Comm. Math. Phys. 267 307-353. · Zbl 1115.82030 · doi:10.1007/s00220-006-0075-4
[26] van der Hofstad, R., Mörters, P. and Sidorova, N. (2008). Weak and almost sure limits for the parabolic Anderson model with heavy tailed potentials. Ann. Appl. Probab. 18 2450-2494. · Zbl 1204.60061 · doi:10.1214/08-AAP526
[27] Viens, F. G. and Zhang, T. (2008). Almost sure exponential behavior of a directed polymer in a fractional Brownian environment. J. Funct. Anal. 255 2810-2860. · Zbl 1152.82028 · doi:10.1016/j.jfa.2008.06.020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.