Chen, Song X.; Peng, Liang; Yu, Cindy L. Parameter estimation and model testing for Markov processes via conditional characteristic functions. (English) Zbl 1259.62069 Bernoulli 19, No. 1, 228-251 (2013). Summary: Markov processes are used in a wide range of disciplines, including finance. The transition densities of these processes are often unknown. However, the conditional characteristic functions are more likely to be available, especially for Lévy-driven processes. We propose an empirical likelihood approach, for both parameter estimation and model specification testing, based on the conditional characteristic function for processes with either continuous or discontinuous sample paths. Theoretical properties of the empirical likelihood estimator for parameters and a smoothed empirical likelihood ratio test for a parametric specification of the process are provided. Simulations and empirical case studies are carried out to confirm the effectiveness of the proposed estimator and test. Cited in 4 Documents MSC: 62M05 Markov processes: estimation; hidden Markov models 62M02 Markov processes: hypothesis testing 60E10 Characteristic functions; other transforms 62G05 Nonparametric estimation 65C60 Computational problems in statistics (MSC2010) Keywords:diffusion processes; empirical likelihood; kernel smoothing; Lévy-driven processes × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Aït-Sahalia, Y. (1996). Nonparametric pricing of interest rate derivative securities. Econometrica 1 157-214. · Zbl 0844.62094 [2] Aït-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach. Econometrica 70 223-262. · Zbl 1104.62323 · doi:10.1111/1468-0262.00274 [3] Aït-Sahalia, Y. (2008). Closed-form likelihood expansions for multivariate diffusions. Ann. Statist. 36 906-937. · Zbl 1246.62180 · doi:10.1214/009053607000000622 [4] Aït-Sahalia, Y., Fan, J. and Peng, H. (2009). Nonparametric transition-based tests for jump diffusions. J. Amer. Statist. Assoc. 104 1102-1116. · Zbl 1388.62124 · doi:10.1198/jasa.2009.tm08198 [5] Barndorff-Nielsen, O.E., Mikosch, T. and Resnick, S.I. (2001). Lévy Process , Theory and Applications , Boston: Birkhäuser. · Zbl 0961.00012 [6] Barndorff-Nielsen, O.E. and Shephard, N. (2001). Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 167-241. · Zbl 0983.60028 · doi:10.1111/1467-9868.00282 [7] Carrasco, M., Chernov, M., Florens, J.P. and Ghysels, E. (2007). Efficient estimation of general dynamic models with a continuum of moment conditions. J. Econometrics 140 529-573. · Zbl 1247.91116 · doi:10.1016/j.jeconom.2006.07.013 [8] Chacko, G. and Viceira, L.M. (2003). Spectral GMM estimation of continuous-time processes. J. Econometrics 116 259-292. · Zbl 1026.62085 · doi:10.1016/S0304-4076(03)00109-X [9] Chen, B. and Hong, Y. (2010). Characteristic function-based testing for multifactor continuous-time Markov models via nonparametric regression. Econometric Theory 26 1115-1179. · Zbl 1294.62093 · doi:10.1017/S026646660999048X [10] Chen, S.X., Gao, J. and Tang, C.Y. (2008). A test for model specification of diffusion processes. Ann. Statist. 36 167-198. · Zbl 1132.62063 · doi:10.1214/009053607000000659 [11] Chen, S.X., Härdle, W. and Li, M. (2003). An empirical likelihood goodness-of-fit test for time series. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 663-678. · Zbl 1063.62064 · doi:10.1111/1467-9868.00408 [12] Chen, S.X., Peng, L. and Yu, C.L. (2011). Supplement to “Parameter estimation and model testing for Markov processes via conditional characteristic functions”. . [13] Chen, S.X. and Van Keilegom, I. (2009). A review on empirical likelihood methods for regression. TEST 18 415-447. · Zbl 1203.62035 · doi:10.1007/s11749-009-0159-5 [14] Cox, J.C., Ingersoll, J.E., Jr. and Ross, S.A. (1985). A theory of the term structure of interest rates. Econometrica 53 385-407. · Zbl 1274.91447 · doi:10.2307/1911242 [15] Duffie, D., Pan, J. and Singleton, K. (2000). Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68 1343-1376. · Zbl 1055.91524 · doi:10.1111/1468-0262.00164 [16] Fan, J. (2005). A selective overview of nonparametric methods in financial econometrics. Statist. Sci. 20 317-357. · Zbl 1130.62364 · doi:10.1214/088342305000000412 [17] Fan, J. and Zhang, C. (2003). A re-examination of diffusion estimators with applications to financial model validation.. J. Amer. Statist. Assoc. 98 118-134. · Zbl 1073.62571 · doi:10.1198/016214503388619157 [18] Feuerverger, A. (1990). An efficiency result for the empirical characteristic function in stationary time-series models. Canad. J. Statist. 18 155-161. · Zbl 0703.62096 · doi:10.2307/3315564 [19] Feuerverger, A. and McDunnough, P. (1981). On some Fourier methods for inference. J. Amer. Statist. Assoc. 76 379-387. · Zbl 0463.62030 · doi:10.2307/2287839 [20] Feuerverger, A. and Mureika, R.A. (1977). The empirical characteristic function and its applications. Ann. Statist. 5 88-97. · Zbl 0364.62051 · doi:10.1214/aos/1176343742 [21] Gao, J. and King, M. (2005). Estimation and model specification testing in nonparametric and semiparametric regression models. Unpublished manuscript. Available at . [22] Genon-Catalot, V., Jeantheau, T. and Larédo, C. (2000). Stochastic volatility models as hidden Markov models and statistical applications. Bernoulli 6 1051-1079. · Zbl 0966.62048 · doi:10.2307/3318471 [23] Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 1926-1947. · Zbl 0795.62036 · doi:10.1214/aos/1176349403 [24] Jiang, G.J. and Knight, J.L. (2002). Estimation of continuous-time processes via the empirical characteristic function. J. Bus. Econom. Statist. 20 198-212. [25] Johannes, M. (2004). The statistical and economic role of jumps in continuous-time interest rate models. J. Finance 1 227-260. [26] Kitamura, Y. (1997). Empirical likelihood methods with weakly dependent processes. Ann. Statist. 25 2084-2102. · Zbl 0881.62095 · doi:10.1214/aos/1069362388 [27] Kitamura, Y., Tripathi, G. and Ahn, H. (2004). Empirical likelihood-based inference in conditional moment restriction models. Econometrica 72 1667-1714. · Zbl 1142.62331 · doi:10.1111/j.1468-0262.2004.00550.x [28] Merton, R. (1976). Option pricing when the underlying stock returns are discontinuous. Journal of Financial Economics 3 125-144. · Zbl 1131.91344 · doi:10.1016/0304-405X(76)90022-2 [29] Øksendal, B. (2000). Stochastic Differential Equations : An Introduction with Applications , 5th ed. Berlin: Springer. · Zbl 1025.60026 [30] Owen, A.B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75 237-249. · Zbl 0641.62032 · doi:10.1093/biomet/75.2.237 [31] Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating functions. Ann. Statist. 22 300-325. · Zbl 0799.62049 · doi:10.1214/aos/1176325370 [32] Singleton, K.J. (2001). Estimation of affine asset pricing models using the empirical characteristic function. J. Econometrics 102 111-141. · Zbl 0973.62096 · doi:10.1016/S0304-4076(00)00092-0 [33] Sørensen, M. (1991). Likelihood methods for diffusions with jumps. In Statistical Inference in Stochastic Processes. Probab. Pure Appl. 6 67-105. New York: Dekker. · Zbl 0733.62087 [34] Stroock, D.W. and Varadhan, S.R.S. (1979). Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 233 . Berlin: Springer. [35] Sundaresan, S.M. (2000). Continuous time finance: A review and assessment. J. Finance 55 1569-1622. [36] Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics 5 177-188. · Zbl 1372.91113 [37] Wang, L. and Van Keilegom, I. (2007). Nonparametric test for the form of parametric regression with time series errors. Statist. Sinica 17 369-386. · Zbl 1145.62033 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.