The inverse problem of finding the time-dependent diffusion coefficient of the heat equation from integral overdetermination data. (English) Zbl 1259.65142

Simultaneous determination of the time-dependent thermal diffusivity and the temperature distribution for one-dimensional heat equation is considered, using the nonlocal boundary and integral overdetermination conditions. The existence and uniqueness of the solution of the inverse problem is shown based on an auxiliary spectral problem and some regularity assumptions of the known data. Result of continuous dependence on the data is also obtained. The inverse problem is then solved by the finite difference method with a predictor-corrector-type approach. Finally, the authors show one numerical example and illustrate the sensitivity of the Crank-Nicolson finite difference scheme combined with an iteration method with respect to noisy over-determination data.


65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R30 Inverse problems for PDEs
Full Text: DOI arXiv


[1] DOI: 10.1017/S0334270000006962 · Zbl 0767.93047 · doi:10.1017/S0334270000006962
[2] DOI: 10.1007/BF00420586 · Zbl 0767.35105 · doi:10.1007/BF00420586
[3] DOI: 10.1080/00036810802140616 · Zbl 1151.65342 · doi:10.1080/00036810802140616
[4] DOI: 10.1007/BF01070965 · Zbl 0812.35157 · doi:10.1007/BF01070965
[5] DOI: 10.1023/A:1012570031242 · Zbl 0991.35102 · doi:10.1023/A:1012570031242
[6] DOI: 10.1016/j.cam.2009.06.017 · Zbl 1173.65059 · doi:10.1016/j.cam.2009.06.017
[7] DOI: 10.1023/B:DIEQ.0000046860.84156.f0 · Zbl 1076.35044 · doi:10.1023/B:DIEQ.0000046860.84156.f0
[8] DOI: 10.1070/SM1993v074n01ABEH003345 · Zbl 0774.35031 · doi:10.1070/SM1993v074n01ABEH003345
[9] Nakhushev AM, Equations of Mathematical Biology (1995)
[10] Ionkin NI, Differ. Eqns. 13 pp 204– (1977)
[11] Il’in VA, Soviet Math. Dokl. 17 pp 513– (1976)
[12] Samarskii AA, Marcel Dekker (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.