×

Numerical solutions to fractional perturbed Volterra equations. (English) Zbl 1259.65210

Summary: A class of perturbed Volterra equations of convolution type with three kernel functions is considered. The kernel functions \(g_\alpha = t^{\alpha - 1}/\Gamma(\alpha)\), \(t > 0\), \(\alpha \in [1, 2]\), correspond to the class of equations interpolating heat and wave equations. The results obtained generalize our previous results from 2010.

MSC:

65R20 Numerical methods for integral equations
45D05 Volterra integral equations
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
26A33 Fractional derivatives and integrals

References:

[1] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, 1993. · Zbl 0793.45014 · doi:10.1007/978-3-0348-8570-6
[2] A. Karczewska and C. Lizama, “Stochastic Volterra equations under perturbations,” preparation. · Zbl 1314.60134
[3] H. Holden, B. Øksendal, J. Ubøe, and T. Zhang, Stochastic Partial Differential Equations, Birkhäuser Boston Inc., Boston, Mass, USA, 1996. · Zbl 0860.60045
[4] A. Kilbas, H. Srivastava, and J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematical Studies, Elsevier, 2006. · Zbl 1092.45003
[5] Leszczyński, An Introduction to Fractional Mechanics, The Publishing Office of Czestochowa University of Technology, Czestochowa, Poland, 2011. · Zbl 1276.34065
[6] R. L. Magin, Fractional Calculus in Bioengineering, Begel House Inc, Redding, Calif, USA, 2006.
[7] F. Mainardi, “Fractional calculus: some basic problems in continuum and statistical mechanics,” in Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), vol. 378, pp. 291-348, Springer, Vienna, Austria, 1997. · Zbl 0917.73004
[8] A. Karczewska, Convolution Type Stochastic Volterra Equations, vol. 10 of Lecture Notes in Nonlinear Analysis, Juliusz Schauder Center for Nonlinear Studies, 2007. · Zbl 1149.60041
[9] A. Karczewska and C. Lizama, “On stochastic fractional Volterra equations in Hilbert space,” Discrete and Continuous Dynamical Systems A, pp. 541-550, 2007. · Zbl 1163.60316
[10] A. Karczewska and C. Lizama, “Stochastic Volterra equations driven by cylindrical Wiener process,” Journal of Evolution Equations, vol. 7, no. 2, pp. 373-386, 2007. · Zbl 1120.60062 · doi:10.1007/s00028-007-0302-2
[11] A. Karczewska, “On difficulties appearing in the study of stochastic Volterra equations,” in Quantum probability and related topics, vol. 27, pp. 214-226, World Scientific, 2011. · Zbl 1258.60039
[12] A. Karczewska and C. Lizama, “Solutions to stochastic fractional relaxation equation,” Physica Scripta T, vol. 136, Article ID 014030, 2009. · Zbl 1158.60028 · doi:10.1088/0031-8949/2009/T136/014030
[13] A. Karczewska and C. Lizama, “Strong solutions to stochastic Volterra equations,” Journal of Mathematical Analysis and Applications, vol. 349, no. 2, pp. 301-310, 2009. · Zbl 1158.60028 · doi:10.1016/j.jmaa.2008.09.005
[14] A. Karczewska and C. Lizama, “Solutions to stochastic fractional oscillation equations,” Applied Mathematics Letters, vol. 23, no. 11, pp. 1361-1366, 2010. · Zbl 1202.60099 · doi:10.1016/j.aml.2010.06.032
[15] Y. Fujita, “Integrodifferential equation which interpolates the heat equation and the wave equation,” Osaka Journal of Mathematics, vol. 27, no. 2, pp. 309-321, 1990. · Zbl 0796.45010
[16] W. R. Schneider and W. Wyss, “Fractional diffusion and wave equations,” Journal of Mathematical Physics, vol. 30, no. 1, pp. 134-144, 1989. · Zbl 0692.45004 · doi:10.1063/1.528578
[17] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Complexity, Nonlinearity and Chaos, World Scientific, Boston, Mass, USA, 2012. · Zbl 1248.26011
[18] I. Podlubny, Fractional Differential Equations, vol. 198, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[19] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Linghorne Pa, USA, 1993. · Zbl 0818.26003
[20] D. Baleanu and J. I. Trujillo, “A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 5, pp. 1111-1115, 2010. · Zbl 1221.34008 · doi:10.1016/j.cnsns.2009.05.023
[21] R. Gorenflo and F. Mainardi, “Fractional calculus: integral and differential equations of fractional order,” in Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), vol. 378 of CISM Courses and Lectures, pp. 223-276, Springer, Vienna, Austria, 1997. · Zbl 0916.34011
[22] J. Sabatier and O. P. Agrawal, Tenreiro Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Berlin, Germany, 2007. · Zbl 1116.00014
[23] R. Hilfer, Ed., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. · Zbl 0998.26002
[24] R. Magin, X. Feng, and D. Baleanu, “Solving the fractional order Bloch equation,” Concepts in Magnetic Resonance Part A, vol. 34, no. 1, pp. 16-23, 2009.
[25] R. L. Magin, “Fractional calculus models of complex dynamics in biological tissues,” Computers & Mathematics with Applications, vol. 59, no. 5, pp. 1586-1593, 2010. · Zbl 1189.92007 · doi:10.1016/j.camwa.2009.08.039
[26] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods, Springer, Berlin, Germany, 2006. · Zbl 1093.76002
[27] C. Li, F. Zeng, and F. Liu, “Spectral approximations to the fractional integral and derivative,” Fractional Calculus and Applied Analysis, vol. 15, no. 3, pp. 383-406, 2012. · Zbl 1276.26016 · doi:10.2478/s13540-012-0028-x
[28] B. Bandrowski, A. Karczewska, and P. Rozmej, “Numerical solutions to integral equations equivalent to differential equations with fractional time,” International Journal of Applied Mathematics and Computer Science, vol. 20, no. 2, pp. 261-269, 2010. · Zbl 1201.35020 · doi:10.2478/v10006-010-0019-1
[29] R. Barrett, M. Berry, T. F. Chan, and et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA, 1994. · doi:10.1137/1.9781611971538
[30] H. A. van der Vorst, “Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” Society for Industrial and Applied Mathematics, vol. 13, no. 2, pp. 631-644, 1992. · Zbl 0761.65023 · doi:10.1137/0913035
[31] Y. Saad and M. H. Schultz, “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems,” Society for Industrial and Applied Mathematics, vol. 7, no. 3, pp. 856-869, 1986. · Zbl 0599.65018 · doi:10.1137/0907058
[32] D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific Computing, University of Texas at Austin, 2002. · Zbl 0877.65002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.