×

On spectral homotopy analysis method for solving linear Volterra and Fredholm integrodifferential equations. (English) Zbl 1259.65217

Summary: A modification of homotopy analysis method (HAM) known as spectral homotopy analysis method (SHAM) is proposed to solve linear Volterra integro-differential equations. Some examples are given in order to test the efficiency and the accuracy of the proposed method. The SHAM results show that the proposed approach is quite reasonable when compared to SHAM results and exact solutions.

MSC:

65R20 Numerical methods for integral equations
45A05 Linear integral equations
45D05 Volterra integral equations
45J05 Integro-ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L. K. Forbes, S. Crozier, and D. M. Doddrell, “Calculating current densities and fields produced by shielded magnetic resonance imaging probes,” SIAM Journal on Applied Mathematics, vol. 57, no. 2, pp. 401-425, 1997. · Zbl 0871.65116 · doi:10.1137/S0036139995283110
[2] K. Parand, S. Abbasbandy, S. Kazem, and J. A. Rad, “A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 11, pp. 4250-4258, 2011. · Zbl 1222.65150 · doi:10.1016/j.cnsns.2011.02.020
[3] P. Darania and A. Ebadian, “A method for the numerical solution of the integro-differential equations,” Applied Mathematics and Computation, vol. 188, no. 1, pp. 657-668, 2007. · Zbl 1121.65127 · doi:10.1016/j.amc.2006.10.046
[4] A. Karamete and M. Sezer, “A Taylor collocation method for the solution of linear integro-differential equations,” International Journal of Computer Mathematics, vol. 79, no. 9, pp. 987-1000, 2002. · Zbl 1006.65144 · doi:10.1080/00207160212116
[5] S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems [Ph.D. thesis], Shanghai Jiao Tong University, 1992.
[6] A. M. Lyapunov, The General Problem of the Stability of Motion, Taylor & Francis, London, UK, 1992. · Zbl 0786.70001
[7] G. Adomian, “A review of the decomposition method and some recent results for nonlinear equations,” Mathematical and Computer Modelling, vol. 13, no. 7, pp. 17-43, 1990. · Zbl 0713.65051 · doi:10.1016/0895-7177(90)90125-7
[8] G. Adomian and R. Rach, “Noise terms in decomposition solution series,” Computers & Mathematics with Applications, vol. 24, no. 11, pp. 61-64, 1992. · Zbl 0777.35018 · doi:10.1016/0898-1221(92)90031-C
[9] G. Adomian and R. Rach, “Analytic solution of nonlinear boundary value problems in several dimensions by decomposition,” Journal of Mathematical Analysis and Applications, vol. 174, no. 1, pp. 118-137, 1993. · Zbl 0796.35017 · doi:10.1006/jmaa.1993.1105
[10] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, vol. 60, Kluwer Academic, Boston, Mass, USA, 1994. · Zbl 0802.65122
[11] P. K. Bera and J. Datta, “Linear delta expansion technique for the solution of anharmonic oscillations,” Pramana Journal of Physics, vol. 68, no. 1, pp. 117-122, 2007. · doi:10.1007/s12043-007-0014-8
[12] S. Liao, “On the homotopy analysis method for nonlinear problems,” Applied Mathematics and Computation, vol. 147, no. 2, pp. 499-513, 2004. · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[13] J. H. He, “The homotopy perturbation method for nonlinear oscillators with discontinuities,” Applied Mathematics and Computation, vol. 151, no. 1, pp. 287-292, 2004. · Zbl 1039.65052 · doi:10.1016/S0096-3003(03)00341-2
[14] G. Domairry, A. Mohsenzadeh, and M. Famouri, “The application of homotopy analysis method to solve nonlinear differential equation governing Jeffery-Hamel flow,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 1, pp. 85-95, 2009. · Zbl 1221.76056 · doi:10.1016/j.cnsns.2007.07.009
[15] Z. Ziabakhsh and G. Domairry, “Solution of the laminar viscous flow in a semi-porous channel in the presence of a uniform magnetic field by using the homotopy analysis method,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 4, pp. 1284-1294, 2009. · doi:10.1016/j.cnsns.2007.12.011
[16] J.-H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257-262, 1999. · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[17] T. Hayat, S. Noreen, and M. Sajid, “Heat transfer analysis of the steady flow of a fourth grade fluid,” International Journal of Thermal Sciences, vol. 47, no. 5, pp. 591-599, 2008. · doi:10.1016/j.ijthermalsci.2007.05.005
[18] M. Jalaal, D. D. Ganji, and G. Ahmadi, “Analytical investigation on acceleration motion of a vertically falling spherical particle in incompressible Newtonian media,” Advanced Powder Technology, vol. 21, no. 3, pp. 298-304, 2010. · doi:10.1016/j.apt.2009.12.010
[19] D. D. Ganji, G. A. Afrouzi, and R. A. Talarposhti, “Application of variational iteration method and homotopy-perturbation method for nonlinear heat diffusion and heat transfer equations,” Physics Letters, Section A, vol. 368, no. 6, pp. 450-457, 2007. · Zbl 1209.80041 · doi:10.1016/j.physleta.2006.12.086
[20] S. Abbasbandy, “Modified homotopy perturbation method for nonlinear equations and comparison with Adomian decomposition method,” Applied Mathematics and Computation, vol. 172, no. 1, pp. 431-438, 2006. · Zbl 1088.65043 · doi:10.1016/j.amc.2005.02.015
[21] S. S. Motsa, P. Sibanda, and S. Shateyi, “A new spectral-homotopy analysis method for solving a nonlinear second order BVP,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 9, pp. 2293-2302, 2010. · Zbl 1222.65090 · doi:10.1016/j.cnsns.2009.09.019
[22] S. S. Motsa, P. Sibanda, F. G. Awad, and S. Shateyi, “A new spectral-homotopy analysis method for the MHD Jeffery-Hamel problem,” Computers & Fluids, vol. 39, no. 7, pp. 1219-1225, 2010. · Zbl 1242.76363 · doi:10.1016/j.compfluid.2010.03.004
[23] S. S. Motsa and P. Sibanda, “A new algorithm for solving singular IVPs of Lane-Emden type,” in Proceedings of the 4th International Conference on Applied Mathematics, Simulation, Modelling (ASM ’10), pp. 176-180, Corfu Island, Greece, July 2010. · Zbl 1343.65087
[24] W. S. Don and A. Solomonoff, “Accuracy and speed in computing the Chebyshev collocation derivative,” SIAM Journal on Scientific Computing, vol. 16, no. 6, pp. 1253-1268, 1995. · Zbl 0840.65010 · doi:10.1137/0916073
[25] L. M. Delves and J. L. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, Cambridge, UK, 1985. · Zbl 0592.65093 · doi:10.1017/CBO9780511569609
[26] K. Maleknejad, S. Sohrabi, and Y. Rostami, “Numerical solution of nonlinear Volterra integral equations of the second kind by using Chebyshev polynomials,” Applied Mathematics and Computation, vol. 188, no. 1, pp. 123-128, 2007. · Zbl 1114.65370 · doi:10.1016/j.amc.2006.09.099
[27] S. Yal\ccinba\cs, M. Sezer, and H. H. Sorkun, “Legendre polynomial solutions of high-order linear Fredholm integro-differential equations,” Applied Mathematics and Computation, vol. 210, no. 2, pp. 334-349, 2009. · Zbl 1162.65420 · doi:10.1016/j.amc.2008.12.090
[28] H. M. Jaradat, F. Awawdeh, and O. Alsayyed, “Series solution to the high-order integro-differential equations,” Fascicola Matematica, vol. 16, pp. 247-257, 2009. · Zbl 1199.65420
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.