×

Uniqueness in inverse electromagnetic conductive scattering by penetrable and inhomogeneous obstacles with a Lipschitz boundary. (English) Zbl 1259.78021

This paper deals with the study of the shape and location of a penetrable, inhomogeneous, isotropic, Lipschitz obstacle surrounded by a piecewise homogeneous, isotropic medium. It is assumed that the obstacle is covered with a thin layer of high conductivity. The main result establishes that the shape and location of the obstacle and the corresponding surface parameter are uniquely determined from the knowledge of the near field data of the scattered electromagnetic wave at a fixed frequency.

MSC:

78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
78M30 Variational methods applied to problems in optics and electromagnetic theory
35R30 Inverse problems for PDEs
35Q60 PDEs in connection with optics and electromagnetic theory
35P25 Scattering theory for PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] F. Hettlich, “Uniqueness of the inverse conductive scattering problem for time-harmonic electromagnetic waves,” SIAM Journal on Applied Mathematics, vol. 56, no. 2, pp. 588-601, 1996. · Zbl 0849.35147 · doi:10.1137/S003613999427382X
[2] T. S. Angell and A. Kirsch, “The conductive boundary condition for Maxwell’s equations,” SIAM Journal on Applied Mathematics, vol. 52, no. 6, pp. 1597-1610, 1992. · Zbl 0786.35127 · doi:10.1137/0152092
[3] G. Vasseur and P. Weidelt, “Bimodal electromagnetic induction in nonuniform thin sheets with an application of the northern Pyrenean induction anomaly,” Geophysical Journal of the Royal Astronomical Society, vol. 51, pp. 669-690, 1977.
[4] F. Cakoni, D. Colton, and P. Monk, “The determination of the surface conductivity of a partially coated dielectric,” SIAM Journal on Applied Mathematics, vol. 65, no. 3, pp. 767-789, 2005. · Zbl 1083.78007 · doi:10.1137/040604224
[5] F. Cakoni, D. Colton, and P. Monk, “The inverse electromagnetic scattering problem for a partially coated dielectric,” Journal of Computational and Applied Mathematics, vol. 204, no. 2, pp. 256-267, 2007. · Zbl 1222.78024 · doi:10.1016/j.cam.2006.03.026
[6] F. Cakoni, D. Colton, and P. Monk, “The electromagnetic inverse-scattering problem for partly coated Lipschitz domains,” Proceedings of the Royal Society of Edinburgh A, vol. 134, no. 4, pp. 661-682, 2004. · Zbl 1071.78021 · doi:10.1017/S0308210500003413
[7] F. Cakoni and H. Haddar, “Identification of partially coated anisotropic buried objects using electromagnetic Cauchy data,” Journal of Integral Equations and Applications, vol. 19, no. 3, pp. 359-389, 2007. · Zbl 1134.78008 · doi:10.1216/jiea/1190905491
[8] V. Isakov, “On uniqueness of recovery of a discontinuous conductivity coefficient,” Communications on Pure and Applied Mathematics, vol. 41, no. 7, pp. 865-877, 1988. · Zbl 0676.35082 · doi:10.1002/cpa.3160410702
[9] V. Isakov, “On uniqueness in the inverse transmission scattering problem,” Communications in Partial Differential Equations, vol. 15, no. 11, pp. 1565-1587, 1990. · Zbl 0728.35148 · doi:10.1080/03605309908820737
[10] A. Kirsch and R. Kress, “Uniqueness in inverse obstacle scattering,” Inverse Problems, vol. 9, no. 2, pp. 285-299, 1993. · Zbl 0787.35119 · doi:10.1088/0266-5611/9/2/009
[11] T. Gerlach and R. Kress, “Uniqueness in inverse obstacle scattering with conductive boundary condition,” Inverse Problems, vol. 12, no. 5, pp. 619-625, 1996. · Zbl 0868.35137 · doi:10.1088/0266-5611/12/5/006
[12] D. Mitrea and M. Mitrea, “Uniqueness for inverse conductivity and transmission problems in the class of Lipschitz domains,” Communications in Partial Differential Equations, vol. 23, no. 7-8, pp. 1419-1448, 1998. · Zbl 0910.35039 · doi:10.1080/03605309808821388
[13] N. Valdivia, “Uniqueness in inverse obstacle scattering with conductive boundary conditions,” Applicable Analysis, vol. 83, no. 8, pp. 825-851, 2004. · Zbl 1076.35135 · doi:10.1080/00036810410001689283
[14] M. Di Cristo and J. Sun, “An inverse scattering problem for a partially coated buried obstacle,” Inverse Problems, vol. 22, no. 6, pp. 2331-2350, 2006. · Zbl 1105.35322 · doi:10.1088/0266-5611/22/6/025
[15] M. Di Cristo and J. Sun, “The determination of the support and surface conductivity of a partially coated buried object,” Inverse Problems, vol. 23, no. 3, pp. 1161-1179, 2007. · Zbl 1118.35067 · doi:10.1088/0266-5611/23/3/019
[16] G. Yan and P. Y. H. Pang, “Inverse obstacle scattering with two scatterers,” Applicable Analysis, vol. 70, no. 1-2, pp. 35-43, 1998. · Zbl 1026.35105 · doi:10.1080/00036819808840673
[17] X. Liu and B. Zhang, “Inverse scattering by an inhomogeneous penetrable obstacle in a piecewise homogeneous medium,” Acta Mathematica Scientia B, vol. 32, no. 4, pp. 1281-1297, 2012. · Zbl 1274.35259 · doi:10.1016/S0252-9602(12)60099-X
[18] X. Liu, B. Zhang, and G. Hu, “Uniqueness in the inverse scattering problem in a piecewise homogeneous medium,” Inverse Problems, vol. 26, no. 1, p. 015002, 14, 2010. · Zbl 1180.35569 · doi:10.1088/0266-5611/26/1/015002
[19] X. Liu and B. Zhang, “Direct and inverse obstacle scattering problems in a piecewise homogeneous medium,” SIAM Journal on Applied Mathematics, vol. 70, no. 8, pp. 3105-3120, 2010. · Zbl 1211.35213 · doi:10.1137/090777578
[20] P. Hähner, “A uniqueness theorem for a transmission problem in inverse electromagnetic scattering,” Inverse Problems, vol. 9, no. 6, pp. 667-678, 1993. · Zbl 0805.35154 · doi:10.1088/0266-5611/9/6/005
[21] X. Liu, B. Zhang, and J. Yang, “The inverse electromagnetic scattering problem in a piecewise homogeneous medium,” Inverse Problems, vol. 26, no. 12, p. 125001, 19, 2010. · Zbl 1219.35363 · doi:10.1088/0266-5611/26/12/125001
[22] D. Colton, R. Kress, and P. Monk, “Inverse scattering from an orthotropic medium,” Journal of Computational and Applied Mathematics, vol. 81, no. 2, pp. 269-298, 1997. · Zbl 0885.35143 · doi:10.1016/S0377-0427(97)00065-4
[23] M. Piana, “On uniqueness for anisotropic inhomogeneous inverse scattering problems,” Inverse Problems, vol. 14, no. 6, pp. 1565-1579, 1998. · Zbl 0920.35170 · doi:10.1088/0266-5611/14/6/014
[24] P. Hähner, “On the uniqueness of the shape of a penetrable, anisotropic obstacle,” Journal of Computational and Applied Mathematics, vol. 116, no. 1, pp. 167-180, 2000. · Zbl 0978.35098 · doi:10.1016/S0377-0427(99)00323-4
[25] F. Cakoni and D. Colton, “A uniqueness theorem for an inverse electromagnetic scattering problem in inhomogeneous anisotropic media,” Proceedings of the Edinburgh Mathematical Society II, vol. 46, no. 2, pp. 293-314, 2003. · Zbl 1051.78013 · doi:10.1017/S0013091502000664
[26] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93, Springer, New York, NY, USA, 2nd edition, 1998. · Zbl 0893.35138
[27] P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press, Oxford, UK, 2003. · Zbl 1024.78009 · doi:10.1093/acprof:oso/9780198508885.001.0001
[28] M. Cessenat, Mathematical Methods in Electromagnetism, vol. 41, World Scientific Publishing, Singapore, 1996. · Zbl 0917.65099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.