×

Global finite-time stabilisation for a class of nonlinear systems. (English) Zbl 1259.93098

Summary: Finite-time stability is investigated for a class of nonlinear systems and a new design is presented for globally finite-time stabilizing feedback, extending the results obtained in X. Huang, W. Lin, and B. Yang [”Global Finite-time Stabilization of a Class of Uncertain Nonlinear Systems”, Automatica 41, No. 5, 881-888 (2005; Zbl 1098.93032)]. The new method may achieve accelerated convergence speed and reduced settling time. An example verifies the feasibility and effectiveness of the proposed design.

MSC:

93D15 Stabilization of systems by feedback
93C15 Control/observation systems governed by ordinary differential equations
93C10 Nonlinear systems in control theory

Citations:

Zbl 1098.93032
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1137/S0363012997321358 · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[2] DOI: 10.1007/s00498-005-0151-x · Zbl 1110.34033 · doi:10.1007/s00498-005-0151-x
[3] DOI: 10.1137/0324047 · Zbl 0603.93005 · doi:10.1137/0324047
[4] DOI: 10.1016/S0167-6911(02)00119-6 · Zbl 0994.93049 · doi:10.1016/S0167-6911(02)00119-6
[5] DOI: 10.1109/9.905699 · Zbl 0992.93075 · doi:10.1109/9.905699
[6] Hong Y, Science in China 35 pp 663– (2005)
[7] DOI: 10.1109/TAC.2006.875006 · Zbl 1366.93290 · doi:10.1109/TAC.2006.875006
[8] DOI: 10.1016/S0167-6911(02)00130-5 · Zbl 0994.93041 · doi:10.1016/S0167-6911(02)00130-5
[9] DOI: 10.1016/j.automatica.2004.11.036 · Zbl 1098.93032 · doi:10.1016/j.automatica.2004.11.036
[10] DOI: 10.1109/TAC.2006.874991 · Zbl 1366.93507 · doi:10.1109/TAC.2006.874991
[11] DOI: 10.1109/9.935058 · Zbl 1012.93053 · doi:10.1109/9.935058
[12] DOI: 10.1016/S0167-6911(00)00089-X · Zbl 0974.93050 · doi:10.1016/S0167-6911(00)00089-X
[13] DOI: 10.1080/00207720902961022 · Zbl 1291.93092 · doi:10.1080/00207720902961022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.