zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability and boundedness of nonlinear hybrid stochastic differential delay equations. (English) Zbl 1259.93127
Summary: One of the important issues in the study of hybrid SDDEs is the automatic control, with consequent emphasis being placed on the asymptotic analysis of stability and boundedness. The method of Lyapunov functions is one of the most powerful techniques in the study of stability and boundedness. So far, most of the results in this area do not only require the Lyapunov functions in different modes have the same feature (e.g. polynomials with the same degree) but also that the diffusion operator in different modes be bounded by the same type of functions. These requirements are restrictive and often cannot be met by those hybrid SDDEs that have different nonlinear structures in different modes. To study the stability and boundedness of such hybrid SDDEs, we will in this paper use different types of Lyapunov functions (e.g. polynomials with different degrees) for different modes. Moreover, the condition on the diffusion operator is relaxed significantly.

93E15Stochastic stability
60H10Stochastic ordinary differential equations
Full Text: DOI