Uniqueness in Calderón’s problem with Lipschitz conductivities. (English) Zbl 1260.35251

Summary: We use \(X^{s,b}\)-inspired spaces to prove a uniqueness result for Calderón’s problem in a Lipschitz domain \(\Omega\) under the assumption that the conductivity lies in the space \(W^{1,\infty}(\overline{\Omega})\). For Lipschitz conductivities, we obtain uniqueness for conductivities close to the identity in a suitable sense. We also prove uniqueness for arbitrary \(C^{1}\) conductivities.


35R30 Inverse problems for PDEs
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
Full Text: DOI arXiv Euclid


[1] G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements , J. Differential Equations 84 (1990), 252-272. · Zbl 0778.35109
[2] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I: Schrödinger equations , Geom. Funct. Anal. 3 (1993), 107-156. · Zbl 0787.35097
[3] R. M. Brown, Global uniqueness in the impedance-imaging problem for less regular conductivities , SIAM J. Math. Anal. 27 (1996), 1049-1056. · Zbl 0867.35111
[4] R. M. Brown and R. H. Torres, Uniqueness in the inverse conductivity problem for conductivities with 3/2 derivatives in \(L^{p}\), \(p>2n\) , J. Fourier Anal. Appl. 9 (2003), 563-574. · Zbl 1051.35105
[5] A. P. Calderón, On an inverse boundary value problem , Comput. Appl. Math. 25 (2006), 133-138. · Zbl 1182.35230
[6] A. Greenleaf, M. Lassas, and G. Uhlmann, The Calderón problem for conormal potentials, I: Global uniqueness and reconstruction , Comm. Pure Appl. Math. 56 (2003), 328-352. · Zbl 1061.35165
[7] A. Greenleaf and G. Uhlmann, Local uniqueness for the Dirichlet-to-Neumann map via the two-plane transform , Duke Math. J. 108 (2001), 599-617. · Zbl 1013.35085
[8] S. E. Kim, Calderón’s problem for Lipschitz piecewise smooth conductivities , Inverse Problems 24 (2008), 055016. · Zbl 1180.35565
[9] R. V. Kohn and M. Vogelius, Determining conductivity by boundary measurements , Comm. Pure Appl. Math. 37 (1984), 289-298. · Zbl 0586.35089
[10] L. Päivärinta, A. Panchenko, and G. Uhlmann, Complex geometrical optics solutions for Lipschitz conductivities , Rev. Mat. Iberoam. 19 (2003), 57-72. · Zbl 1055.35144
[11] J. Sylvester and G. Uhlmann, A uniqueness theorem for an inverse boundary value problem in electrical prospection , Comm. Pure Appl. Math. 39 (1986), 91-112. · Zbl 0611.35088
[12] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem , Ann. of Math. (2) 125 (1987), 153-169. · Zbl 0625.35078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.